Photophysical mechanistic aspects of AOPs

A. Arques

Universitat Politècnica de València, Campus de Alcoy, Spain

E-mail: aarques@txp.upv.es

Interaction radiation-matter

- Electromagnetic radiation is able to induce important changes in matter.
- In the energy range employed in photochestry, excited electronic states are generated, which in turn, can undergo chemical reactions.

Interaction radiation-matter

- Energetic law: Electromagnetic radiation can only dirve a chemical transformation if its energy is, at least, that required for the process.
- Grotthus-Draper law: light must be absorbed by a compound for a photochemical reaction to take place
- Stark-Einstein law: for each photon of light absorbed by a chemical system, only one molecule is activated for subsequent reaction.

Atomic absorption: Böhr's model

Atomic emission: Böhr's model

Aborption: quantum theory

Aborption: quantum theory

N_2

Jablonski diagram

Jablonski diagram

- During electronic transitions the distance between nuclei is preserved. Hence, an excited vibrational orbital is reached
- The maximum of fluorescence emission is shifted towards longer wavelenth than that of the excitation spectrum

Absorption and fluorescence spectra

Why fluorescence deactivates?

Interaction light-matter in solids

Interaction light-matter in solids

Photochemical reactions

The photochemical reaction

- The activation energy is mainly supplied as radiation
- Reaction occurs from an excited state, which has very different charasteristics than the ground state
- Excited molecules exhibit an excess of energy, and they can undergo more reactions than from their ground state.

Photochemical reaction

The photochemical reaction: thermodinamics

Quantum yield

Number of transformed molecules per absorbed photon

$$\phi = \frac{transformed\ molecules}{absorbed\ photons}$$

- It can take a wide number of values, even higher than 1
- If defined as the primery quantum yiel (affecting only to the photochemical transformation) the value is always lower than 1.

Reaction mechanisms

Alternative mechanistic pathways

P= Photocatalyst, Q= Pollutant or model compound

Determination of a mechanistic pathway: TPP vs MTDT

Possible involvement of ¹P* (pathway i)

Possible involvement of ¹P* (pathway i): fluorescence measurements

Possible involvement of ¹P* (pathway i): fluorescence measurements

- Obtained rate constants are above diffusion limits
- There is no dinamic quenching of the fluorescence (lifetime does not depend on the concentration of pollutant)

Possible involvement of ³P*: laser flash photolysis

Possible involvement of ³P*: laser flash photolysis

Lifetimes did not change in the presence of the pollutant

Photoinduced electron transfer from a ground state complex (pathway vi)

Photoinduced electron transfer from a ground state complex (pathway vi)

