

LSRE-LCM SHAKING THE PRESENT

AOPs PhD School NOVEL PHOTOREACTORS FOR PHOTOCHEMICAL/ PHOTOCATALYTIC PROCESSES: TOWARDS

PROCESS INTENSIFICATION

Vítor J.P. Vilar (Principal Researcher at LSRE-LCM)

Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis

and Materials (LSRE-LCM)

Faculty of Engineering, University of Porto

Porto, Portugal

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

ELOCATE LAROANTORY ABORATORY OF SEPARATION AND REACTION ENGINEERING ABORATORY OF CATALYUS AND MATHRALS

13/07/2017

INTRODUCTION

- Light induced AOPs/EAOPs are attractive technologies with potential application in the area of water, wastewater and air treatment;
- Industrial application remains limited due to low reactivity of photocatalyts in combination with photoreactors, high costs and scale up problems:
 - Integration of AOPs/EAOPs with other technologies such as coagulation/flocculation, biological oxidation, adsorption and membrane filtration to reduce substantially the costs associated with the AOPs/EAOPs step;
 - Intensification of AOPs/EAOPs through the use of innovative photoreactors (solar collectors, microreactors, photocatalytic membrane reactors) to minimize photon and mass transfer limitations.

MULTISTAGE TREATMENT SYSTEM FOR LEACHATES

Most Expensive Step

European Patent nr. 14161588.0

Title: Method of Treating Leachate, Phototreatment Reactors and Respective Use **Applicant**: EFACEC ENGENHARIA E SISTEMAS, S.A.

PROCESS INTENSIFICATION

Stankiewicz and Moulijn (2000) and Stankiewicz and Drinkenburg (2004) provide a definition of PI, comprising *novel equipment, processing* techniques, and process development methods that, compared to conventional ones, offer substantial improvements in (bio)chemical manufacturing and processing.

Stankiewicz, A., & Moulijn, J. A. (2000) Process Stankiewicz, A., & Drinkenburg, A. H. (2004). Process intensification: History, philosophy, principles. In A. intensification: Transforming Stankiewicz & J. A. Moulijn (Eds.) chemical engineering. CEP. 96, 22.

Re-engineering the chemical processing plant (pp. 1-32). NewYork: Dekker.

Jacob A. Moulijn

- Producing much more with much less is the clue to process intensification.

Computers and Chemical Engineering 32 (2008) 3–11

PROCESS INTENSIFICATION: Photocatalytic Processes

- 1. Overcoming mass transfer limitations: promoting fast adsorption-desorption, increasing catalyst surface area (hydrodynamics; external mass transfer; internal mass transfer)
- 2. Optimizing photon transfer limitations: optimum lighting strategy and reactor geometry to maximize irradiance;
- 3. Equipment: smaller, lighter, cheaper, excellent operation.
- Illumination Efficiency:

$$\eta_{ill} = k \left(\frac{P_{cat}}{P_{lamp}} \right) \left(\frac{A_{min,E}}{A_{cat}} \right)$$

Average power efficiency

k – illuminated catalyst coated surface per reaction liquid volume (m_{ill}^2/m^3);

 P_{cat} – radiant power incident on the catalyst surface (W);

 P_{lamp} – radiant power emitted from the lamp (W);

 $A_{min, E}$ – catalyst surface that receives at least the band-gap energy (m²)

 A_{cat} – total catalyst surface (m^2)

Tom Van Gerven et al 2007, Chemical Engineering and Processing: Process Intensification 46, pp 781-789 Tom Van Gerven et al 2015, Chemical Engineering and Processing: Process Intensification 97, pp 106-111

PROCESS INTENSIFICATION: Photocatalytic Processes

- 1. Overcoming mass transfer limitations: promoting fast adsorption-desorption, increasing catalyst surface area (hydrodynamics; external mass transfer; internal mass transfer)
- 2. Optimizing photon transfer limitations: optimum lighting strategy and reactor geometry to maximize irradiance;
- 3. Equipment: smaller, lighter, cheaper, excellent operation.

- Reactivity of photocatalyst in combination with the photoreactor (mol of pollutants converted per m³ of reactor per second (or accumulated energy));

- Photocatalytic space-time yield – m³ water treated per m³ of reactor per day per kW.

Tom Van Gerven et al 2007, Chemical Engineering and Processing: Process Intensification 46, pp 781-789

Tom Van Gerven et al 2015, Chemical Engineering and Processing: Process Intensification 97, pp 106-111

PROCESS INTENSIFICATION: SOLAR COLLECTOR OPTICS

Solar Hardware for Photocatalytic Processes are Based on TiO₂ Application

New Solar Hardware for Photo-Fenton Applications

Photo-Fenton UV-Vis Radiation

Reflective surfaces with different materials and geometries must be tested

⇒ Low-cost

Opportunities

for New

Photoreactor

Design

- More resistant to outdoor conditions
- ⇒ Higher volumetric
- capacity (nº tubes/m²)

PROCESS INTENSIFICATION: SOLAR COLLECTOR OPTICS

2 Pieces Double Parabola (DP)

Advantages	Disadvantages
- Geometric Concentration Ratio of 1.00	 Higher area of reflector aperture Higher manufacturing cost Fix no. of absorber tubes/m² (~29 tubes per 6 m²)

Single Piece Double Parabola (SP)

Flat (F)

Advantages	Disadvantages
 Smaller area of reflector aperture Higher no. of absorber tubes/ m² (32 tubes per 6 m²) Lower manufacturing cost 	- Geometric Concentration Ratio of 0.82
Advantages	Disadvantages

PROCESS INTENSIFICATION: PHOTOREACTOR USING ARTIFICIAL LIGHT - FluHelik

Helical Motion of Fluid Around the UVC Lamp, Inducing Unique Fluid Dynamics and Irradiation Properties

PROCESS INTENSIFICATION: PHOTOREACTOR USING ARTIFICIAL LIGHT - FluHelik

- i. higher velocities in almost the entire domain of the reactor but with low velocities near the UVC lamp, promoting high contact between fluid and radiation;
- ii. higher turbulent intensity and subsequent higher degree of mixing;
- iii. longer residence time of fluid particles inside the reactor and lower fraction of short-circuiting zones;
- iv. more uniform UV fluence;
- v. very simple and compact arrangement in series for full scale applications.

PROCESS INTENSIFICATION: PHOTOCATALYTIC MEMBRANE REACTORS

Separation Function/Photocatalytic Activity

- Enhancement of its antifouling properties (in situ regeneration)
- Negligible mass transfer limitations; Negligible photons transfer limitation

PROCESS INTENSIFICATION: PHOTOCATALYTIC MICRO-MESO-REACTORS (NETmix) USING MICROSCALE ILLUMINATION

PROCESS INTENSIFICATION: PHOTOCATALYTIC MICRO-MESO-REACTORS (NETmix) USING MICROSCALE ILLUMINATION

- high illuminated catalyst surface area per reactor volume;

- due to the small size of the channels, microreactors present short molecular diffusion distances;

- uniform irradiance of the entire catalyst surface and through the entire reactor depth;

- self-cleaning effect (fast removal of adsorbed byproducts, renewing the catalytic sites);

- "scaling-out" or "numbering-up" instead of scaling-up.

MULTI-CHANNEL DESIGN SCALE-UP IN PARALLEL

PROCESS INTENSIFICATION: TUBULAR PHOTOCATALYTIC REACTOR WITH STATIC MIXER

FINAL REMARKS/CHALLENGES

Integration of AOPs/EAOPs with other Technologies

Development of Breakthrough Designs for Photoreactors Towards Process Intensification

MAIN CHALLENGES TO BE ADDRESSED IN THE FUTURE

ACKNOWLEDGEMENTS

ADDOCHTE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYDS AND MATERIALS

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO FUNDAÇÃO PARA A CIÊNCIA E ENSINO SUPERIOR

C MPETE 2020

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional

III CIPOA

Medellin (Guatapé), Colombia November 14 – 17, 2017

3rd IBEROAMERICAN CONFERENCE ON ADVANCED OXIDATION TECHNOLOGIES (III CIPOA) 2nd COLOMBIAN CONFERENCE ON ADVANCED OXIDATION PROCESSES (II CCPAOX)

> Abstract submission deadline 15/07/2017 http://cipoa2017.com

ADDCLATE LARGEATORY LARGEATORY OF SEPARATION AND REACTION ENGINEERING LARGEATORY OF CATALYSIS AND MATTERIALS

Thank You For Your Kind Attention