

University of Salerno Fisciano, 15 June 2015

TROJAN technologies™

Modelling AOPs using Computational Fluid Dynamics: Coupling Optics, Hydraulics and Photochemistry

Domenico Santoro, Ph.D. Trojan Technologies – Canada Email: dsantoro@trojanuv.com

Outline

- Introduction
- Part I: Mathematical Framework
- Part II: Disinfection Applications
- Part III: AOP Applications
- Conclusions
- Acknowledgements

Introduction

Background

- Historically, Analytical Fluid Dynamics (AFD) and EFD (Experimental Fluid Dynamics) were used.
- Computational Fluid Dynamics (CFD) has become feasible due to the advent of high speed digital computers.
- Computer simulation for prediction of fluid-flow phenomena and complex reactor behaviours.

- The objective of CFD is to model the continuous fluids (with or without sink terms) with discretized PDEs.
- Then, turn PDEs into an algebraic problem, solve it and verify it.
 Finally, validate it and achieve simulation based design
- Growing number of applications, including: Aerospace, Automotive, Biomedical, Chemical, Environmental, Hydraulics, Oil & Gas, Power Generation, etc.

CFD = *Colorful* Fluid Dynamics?

Soultors. Transformation Units

Total Discharge = 125,000 cfs (no flow through spillway)

Environmental Hydraulics

technologies™

Sports

Standard Industrial Apparatus

Dose UV = Io x WF x DF x PF x RF

Dose Distribution Concept

TROJAN technologies™

Part I: Mathematical Framework

Mathematical Framework (1)

Control Volume (Cartesian Coordinates)

Mathematical Framework (2)

Vectorial form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0$$

Alternative form

Steady state

$$\vec{\nabla}\cdot\left(\rho\vec{V}\right)=0$$

• Incompressible fluids

$$\left|\frac{1}{\rho}\frac{D\rho}{Dt} + \nabla \cdot \vec{V} = 0\right| \quad \blacksquare$$

$$ec{
abla}\cdotec{V}=0$$

Mathematical Framework (3)

Conservation of Momentum (Newton's 2nd law)

$$\sum \vec{F} = \underbrace{\int_{CV} \rho g \, \mathrm{d}\mathcal{V}}_{\text{Body}} + \underbrace{\int_{CS} \sigma_{ij} \cdot \vec{n} \, \mathrm{d}A}_{\text{Surface}}$$

• Cauchy's Equation

$$\frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) = \rho \vec{g} + \nabla \cdot \sigma_{ij}$$

Mathematical Framework (4)

• Relating Shear-Stress to Strain-Rate

technologies

Mathematical Framework (5)

• Turbulence Models

- It's a model within the model
- It's a computational procedure to close the system of mean flow equations
- How turbulence affected the mean flow?

Mathematical Framework (6)

• State-of-the-art Turbulence Models

- Zero equation model: mixing length model
- One equation model: Spalart-Almaras
- Two equation models: k-eps, k-omega model
- Seven equation model: Reynolds stress model
- Large Eddy Simulation (LES) model
- Boussinesq Approximation (1877)
 - Reynolds stresses could be linked to the mean rate of deformation

$$\tau_{ij} = -\rho \overline{u_i' u_j'} = \mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$

Mathematical Framework (7)

• K parameter

• Epsilon parameter

Mathematical Framework (8)

• Generalized Scalar Transport Equations

$$\frac{\partial u\phi}{\partial x} + \frac{\partial v\phi}{\partial y} + \frac{\partial w\phi}{\partial z} = \frac{\partial}{\partial x} \left[\Gamma_{\phi} \frac{\partial \phi}{\partial x} \right] + \frac{\partial}{\partial y} \left[\Gamma_{\phi} \frac{\partial \phi}{\partial y} \right] + \frac{\partial}{\partial z} \left[\Gamma_{\phi} \frac{\partial \phi}{\partial z} \right] + S_{\phi}$$

Table 1

Values of Φ , Γ_{Φ} and S_{Φ} for the convection and diffusion equation in Cartesian coordinate system.

#	Equation	Φ	Γ_{Φ}	S_{Φ}
a	Continuity	1	0	0
b	Momentum in x direction	и	$v + v_t$	$-\frac{1}{\rho}\frac{\partial(p+2k/3)}{\partial x}$
с	Momentum in y direction	v	$v + v_t$	$-\frac{1}{\rho}\frac{\partial(p+2k/3)}{\partial y}$
d	Momentum in z direction	w	$v + v_t$	$-\frac{1}{\rho}\frac{\partial(p+2k/3)}{\partial z}$
e	Turbulent kinetic energy	k	$\nu + \frac{\nu_t}{\sigma_k}$	$P_k - \varepsilon$
f	Dissipation rate	8	$\nu + \frac{\nu_t}{\sigma_{\epsilon}}$	$C_{\varepsilon 1} \frac{\varepsilon}{k} P_k - C_{\varepsilon 2} \frac{\varepsilon^2}{k}$
g	Scalar (microbial inactivation)	Ν	$\frac{v_t}{Sc_t}$	-kIN
h	Scalar (UV dose)	D	0	+1

Crapulli et al., (2010): "Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics", *Chemical Engineering Journal*, 161 (2010) pp. 9–18

Mathematical Framework (9)

- Radiative Transport Equation (RTE)
 - It is solved for a discrete number of angles
 - Optical properties of the fluid must be known
 - Light source emission characteristics must be known
 - Light behavior at the interface must be understood
 - Fluence rate (not irradiance) is the key variable

Part II: Disinfection Applications

Monochromatic Disinfection: Teflon UV Photoreactors (1)

Fig. 1. Horizontal and vertical cross-sections of the fluoropolymer tube UV photoreactor.

Fig. 10. Fluence rate (right) and cumulated UV dose (left) in the fluoropolymer UV photoreactor (flowrate = 1.261s⁻¹, UVT₂₅₄ = 67.9% cm⁻¹).

Monochromatic Disinfection: Teflon UV Photoreactors (2)

Fig. 2. Relevant light components in an integrating sphere apparatus.

Fig. 4. Transmittance spectra of the fluoropolymer tube (1.2 mm thick sample).

Monochromatic Disinfection: Teflon UV Photoreactors (3)

Fig. 5. Fluence rate profiles for three different computational grids.

Fig. 7. Comparison between observed and predicted MS2-RED.

Polychromatic Disinfection: Quartz UV Photoreactors

$$D_{eff}(i) = \sum_{\lambda=200}^{300} \sum_{t=0}^{T} I_{\lambda}(x, y, z) \times \Delta t \times \varepsilon_{\lambda}$$

Part III: AOP Applications

UV/H2O2 AOP Photoreactors (1)

FIGURE 9. [OH•] dose distribution for annular and cross-flow photoreactors.

Santoro et al., (2010): "Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV– H2O2 photoreactors using computational fluid dynamics", *Environmental science & technology 44 (16)*, pp. 6233-6241

UV/H2O2 AOP Photoreactors (2)

TABL	TABLE 1. Kinetic Model of UV—H2O2 Advanced Oxidation of Phosphate Esters (16)							
no.	reactions	rate constants, $M^{-1} s^{-1}$	reference					
1	$H_2O_2/HO_2^- + hv \rightarrow 2OH$	$I_{UV,H_2D_2}^{local} = -2.303\phi_{H_2D_2}[(\epsilon_{H_2D_2}[H_2O_2] + \epsilon_{HD_2}[HO_2])$	Baxendale and Wilson (17)					
2	$H_2O_2 + OH \rightarrow H_2O + HO_2 \rightarrow$	$k_2 = 2.7 \times 10^7$	Buxton et al. (18)					
3	$OH_{\bullet} + HO_2^- \rightarrow HO_{2^{\bullet}} + OH^-$	$k_2 = 7.5 \times 10^5$	Christensen et al. (19)					
4	$H_2O_2 + HO_2 \bullet \rightarrow OH \bullet + H_2O + O_2$	<i>k</i> ₄ = 3	Koppenol et al. (20)					
5	$H_2O_2 + O_2^{-\bullet} \rightarrow OH^{\bullet} + O_2 + OH^{-\bullet}$	<i>k</i> ₅ = 0.13	Weinstein and Bielski (21)					
6	$OH \bullet + CO_2^{2-} \rightarrow CO_2^{-} \bullet + OH^{-}$	$k_{\rm S}=3.9 imes10^8$	Buxton et al. (18)					
7	$OH\bullet ~+~ HCO_2^- \rightarrow CO_2^-\bullet ~+~ H_2O$	$k_7 = 8.5 \times 10^{5}$	Buxton et al. (18)					
8	$H_2O_2 + CO_2^{-\bullet} \rightarrow HCO_2^- + HO_2^{\bullet}$	$k_{B} = 4.3 \times 10^{5}$	Draganic et al. (22)					
9	$HO_2^- + CO_2^- \bullet \rightarrow CO_2^{2-} + HO_2^- \bullet$	$k_{0} = 3.0 \times 10^{7}$	Draganic et al. (22)					
10	$OH_{\bullet} + OH_{\bullet} \rightarrow H_2O_2$	$k_{10} = 5.5 \times 10^9$	Buxton et al. (18)					
11	$OH_{\bullet} + HO_{2^{\bullet}} \rightarrow H_{2}O + O_{2}$	$k_{11} = 6.6 \times 10^9$	Sehested et al. (23)					
12	$HO_2 \bullet + HO_2 \bullet \rightarrow H_2O_2 + O_2$	$k_{12} = 8.3 \times 10^5$	Bielski et al. (24)					
13	$HO_2 \bullet + O_2^- \bullet \rightarrow HO_2^- + O_2$	$k_{13} = 9.7 \times 10^7$	Bielski et al. (24)					
14	$OH \bullet + O_2^- \bullet \rightarrow O_2 + OH^-$	$k_{14} = 7.0 \times 10^9$	Beck (25)					
15	$OH \bullet + CO_2 \bullet - ?$	$k_{15} = 3.0 \times 10^9$	Holeman et al. (26)					
16	$CO_2^{-\bullet} + O_2^{-\bullet} \rightarrow CO_2^{2-} + O_2$	$k_{16} = 6.0 \times 10^{8}$	Eriksen et al. (27)					
17	$CO_2^{-\bullet} + CO_2^{-\bullet} \rightarrow ?$	$k_{17} = 3.0 \times 10^{7}$	Huie and Clifton (28)					
18	$OH + TCEP \rightarrow TCEP_{products}$	$k_{10} = k_{TCEP} = 5.6 \times 10^8$	Watts and Linden (29)					
19	$OH + TBP \rightarrow TBP_{products}$	$k_{10} = k_{7BP} = 6.4 \times 10^{9}$	Watts and Linden (29)					
20	$H_2CO_2 \hookrightarrow H^+ + HCO_2^-$	$pK_{a1} = 6.3$	Stumm and Morgan (30)					
21	$HCO_3^- \hookrightarrow H^+ + CO_3^{2-}$	<i>pK_{s2}</i> = 10.3	Stumm and Morgan (30)					
22	$H_2O_2 \hookrightarrow H^+ + HO_2^-$	<i>pK₁₀</i> = 11.6	Perry et al. (31)					
23	$HO_2 \hookrightarrow H^+ + O_2^-$	$pK_{st} = 4.8$	Perry et al. (31)					

FIGURE 2. Comparison of numerical and experimental removal yield for TCEP and TBP.

FIGURE 10. Impact of hydroxyl radical rate constant on EEO and reactor log removal.

VUV/H2O AOP Photoreactors (1)

Symbol and units	Elementary reaction	Value and reference
Φ_1 [mol einstein ⁻¹]	$H_2O+hv_{172nm} \mathop{\rightarrow} HO^* + H^*$	0.42 [Azrague et al., 2005] 0.45 [Gonzalez and Braun, 1995] 0.42 [Gonzalez et al., 2004] 0.42 [Sosnin et al., 2006] 0.37 [Zvereva, 2010]
Φ_2 [mol einstein ⁻¹]	$\mathrm{H_2O} + \mathrm{hv_{172nm}} \rightarrow \mathrm{HO^*} + \mathrm{H^+} + e_{aq}^-$	0.05 [Gonzalez and Braun, 1995] 0.045 [Gonzalez et al., 2004] 0.05 [Sosnin et al., 2006] 0.05 [Zvereva, 2010]
Φ ₃ [mol einstein ⁻¹]	$H_2O_2 + hv_{172nm} \rightarrow HO^* + HO^*$	0.5 [Zvereva, 2010]
k ₄ [m ³ mol ⁻¹ s ⁻¹]	$e_{aq}^- + \ H^+ \!\rightarrow\! H^*$	2.3·10 ⁷ [Gonzalez and Braun, 1995] 2.2·10 ⁷ [Gonzalez et al., 2004] 2.3·10 ⁷ [Imoberdorf and Mohseni, 2011] 2.3·10 ⁷ [Zvereva, 2010] 2.14·10 ⁷ [Manion et al. – NIST Databass
k₅ [m³ mol−1 s−1]	$HO^* + H_2 \!\rightarrow\! H^* + H_2O$	6.0·10 ⁴ [Gonzalez and Braun, 1995] 6.0·10 ⁶ [Gonzalez et al., 2004] 6.0·10 ⁶ [Imoberdorf and Mohseni, 2011] 4.2·10 ⁶ [Zvereva, 2010] 4.6·10 ⁶ [Manion et al. – NIST Database]
k ₆ [m ³ mol ⁻¹ s ⁻¹]	$O^{*-} + H_2 {\rightarrow} H^* + OH^-$	8.0·10 ⁴ [Zvereva, 2010]
k7 [m ³ mol ⁻¹ s ⁻¹]	$H_2 + O_3^{*-} \rightarrow O_2 + OH^- + H^*$	2.5-10 ² [Zvereva, 2010]
$k_8 [m^3 mol^{-1} s^{-1}]$	$e^{aq} + H_2 O \!\rightarrow\! H^\star + O H^-$	1.9·10 ⁻² [Imoberdorf and Mohseni, 2011 1.9·10 ⁻² [Zvereva, 2010]
k ₉ [m ³ mol ⁻¹ s ⁻¹]	$H^{\star} + H_2O \!\rightarrow\! H_2 + HO^{\star}$	1.0·10 ⁻² [Zvereva, 2010]
k ₁₀ [m ³ mol ⁻¹ s ⁻¹]	$H^* + H^* \mathop{\rightarrow} H_2$	1.0 · 10 ⁷ [Gonzalez and Braun, 1995] 1.0 · 10 ⁷ [Gonzalez et al., 2004] 1.0 · 10 ⁷ [Imoberdorf and Mohseni, 2011] 1.0 · 10 ⁷ [Robl et al., 2012] 1.5 · 10 ⁷ [Zvereva, 2010] 7.8 · 10 ⁶ [Manion et al. – NIST Database]
k ₁₁ [m ³ mol ⁻¹ s ⁻¹]	$HO^* + H^* \!\rightarrow\! H_2O$	2.4·10 ⁷ [Gonzalez and Braun, 1995] 2.4·10 ⁷ [Gonzalez et al., 2004] 7.0·10 ⁶ [Heit et al., 1998] 7.0·10 ⁶ [Imoberdorf and Mohseni, 2011] 1.5·10 ⁷ [Robl et al., 2012] 7.0·10 ⁶ [Zvereva, 2010]

Crapulli et al., (2014): "Mechanistic modeling of vacuum UV advanced oxidation process in an annular photoreactor", *Water Research 64*, pp. 209-22

VUV/H2O AOP Photoreactors (2)

technologies™

VUV/H2O AOP Photoreactors (3)

VUV/H2O AOP Photoreactors (4)

Rotating Photoreactors (1)

technologies™

Crapulli et al., (2015): "Quantifying ultraviolet inactivation kinetics in nearly opaque fluids", Water Quality Research Journal of Canada, 75 (2), pp. 97-103

Rotating Photoreactors (2)

technologies"

Rotating Photoreactors (3)

TiO2/UV AOP Photoreactors (1)

Unpublished to date. Work conducted in collaboration with Prof. Antonelli and Dr. Turolla (Polytechnic of Milan)

technologies™

TiO2/UV AOP Photoreactors (2)

Conclusions

- CFD is a mature methodology for (photo)reactor analysis; AOP applications are already successfully reported both by academia and industry.
- AOP modeling revealed numerous features otherwise impossible to observe;
- CFD is not a magic tool. Extensive verification and validation is still required before its use;
- CFD can be learned in a matter of weeks; the issue is how to use it. Understanding physics and chemistry is more important than mastering mathematics.

Acknowledgements

- The summer school organizers (Prof. Rizzo and Dr. Ferro)
- Trojan Technologies and Western University
- Charles N. Haas (Drexel University)
- My team members and co-authors;
- Manuela Antonelli and Andrea Turolla (Polimi)
- Funding agencies (NSERC, MITACS, R.Puglia, etc.)

