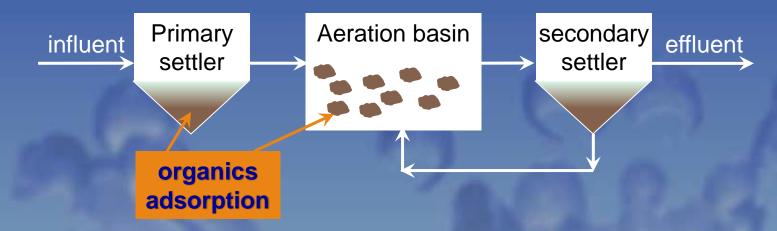
Degradation of polybrominated diphenyl ethers in sewage sludge by ozonation and solubilisation of degradation products in the water phase

Giuseppe Mascolo

CNR – Istituto di Ricerca Sulle Acque Via F. de Blasio, 5 - 70132 Bari, Italy

Presentation outline

- Focusing the problem;
- Potential side-benefits of sludge ozonation;
- Results obtained treating real sewage sludge (primary and mixed digested) by ozone:
 - Process performance through gross-parameters monitoring
 - removal of PolyBrominated Diphenyl Ethers (PBDEs);
 - Organic bromine distribution between liquid and solid phase;
 - by-products formation/degradation and toxicity;
- Conclusions.

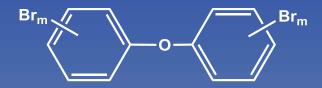

FOCUSING THE PROBLEM

- Management of sludge produced in the wastewater treatment plants represents a global environmental and economic issue:
 - The volume of the sludge extracted from primary and secondary settling tanks is about 2% of the volume of treated wastewater;
 - Sludge treatment and disposal entails very high capital and operating costs, which can account for as high as 50 % of the total costs of wastewater treatment plant;
- Presently, an outlet for sludge disposal is its use in agriculture as a fertilizer.
- According to 86/278 Directive, sludge has to be used taking primarily into account the nutrient needs for plant growth, and that the quality of the soil and the surface- and ground-waters is not impaired.

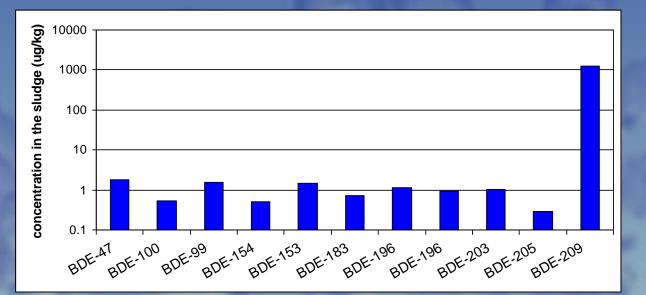
RSA

Organic pollutants in sludge: how is it possible to limit their presence?

 During operation of wastewater treatment plants sorption of hydrophobic organics onto sludge flocs occurs.

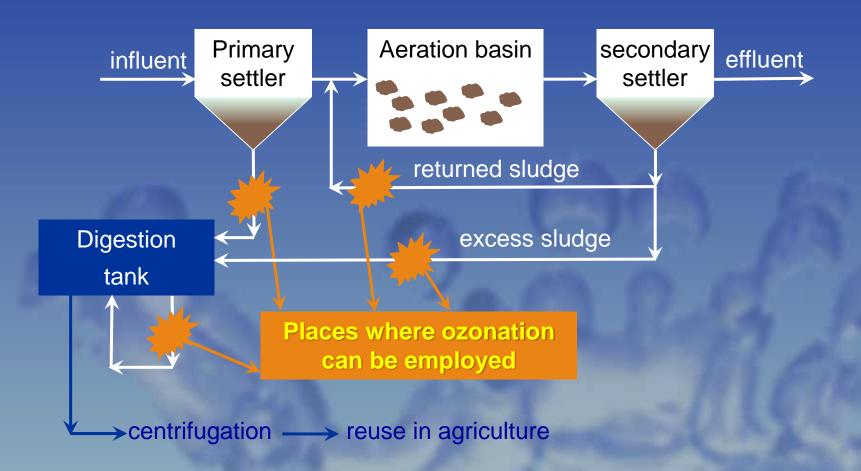


 Brominated flame retardants enter sewage treatment plants and are mainly partitioned onto sludge due to their hydrophobic properties. They are then accumulated on sludge causing pollution of the sites where sludge is ultimately disposed of.



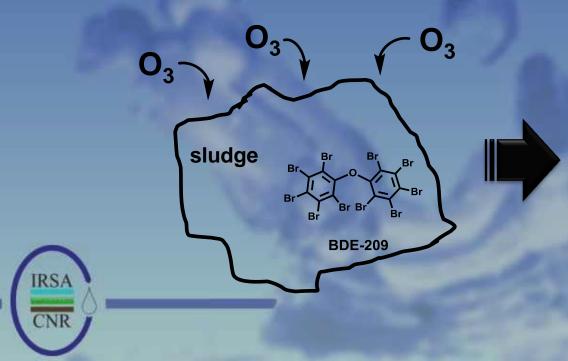
Organic pollutants in sludge: PolyBrominated Diphenyl Ethers (PBDEs)

BDE congener	number of bromine atoms
BDE-47	4
BDE-99	5
BDE-100	5
BDE-153	6
BDE-154	6
BDE-183	7
BDE-196	8
BDE-197	8
BDE-203	8
BDE-205	8
BDE-209	10



PBDE (209 isomers)

Application of ozonation for sludge reduction



Main goals of the performed investigation

Experiments on ozonation of sewage sludge to degrade
brominated flame retardants on primary and mixed-digested
sludge.

□ Identification of degradation products and degradation pathway.

degradation products

Composition of influent/effluent wastewater (primary step)

	TSS, mg/L	VSS, mg/L	VSS/TSS	COD, mg/L	TN, mg/L	N-NH ₄ , mg/L	N-NO ₂ , mg/L	N-NO ₃ , mg/L	P tot, mg/L	IC, mg/L	DOC, mg/L
influent (total)	254 ± 37	221 ± 29	0.87 ± 0.03	408 ± 48	52 ± 7	45.2 ± 4.5			7.5 ± 2.0		
influent (sol.)				116 ± 42	45.8 ± 8.1	39.8 ± 3.7	0.03 ± 0.01	0.14 ± 0.08	5.3 ± 2.1	87.4 ± 6.4	34.2 ± 10
effluent (total)	120 ± 31	109 ±24	0.91 ± 0.06	309 ± 47	44.1 ± 4.3	38.1 ± 7.0			5.5 ± 2.1		
effluent (sol.)				127 ± 55	35.7 ± 5.0	32.8 ± 7.2	0.03 ± 0.01	0.20 ± 0.06	3.6 ± 0.9	84.5 ± 9.9	39.6 ± 14

Bari-west wastewater treatment plant 250,000 PE Average flow rate = 0.6 m³/s, pH = 7.5-7.9

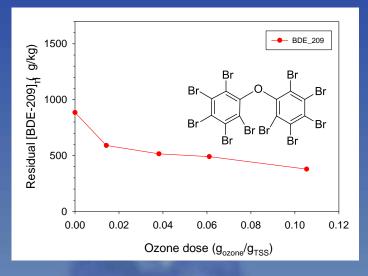
IRSA

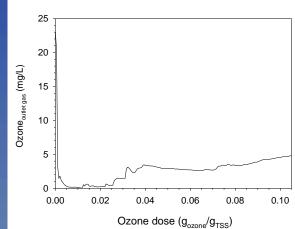
Ozonation of mixed-digested sludge: gross parameters

ozone dose g _{ozone} /g _{TSS}	TSS g/L	VSS g/L	VSS/TSS	COD g/L	TN mg/L	N-NH ₄ mg/L	N-NO ₂ mg/L	N-NO ₃ mg/L	P tot. mg/L	IC mg/L	TOC mg/L
total (liquid + solid phase)											
0	24.3	16.9	0.695	28.6	589	560			316		
0.014	23.2	16.6	0.716	24.6	593	532			298		
0.038	21.2	14.5	0.684	26.4	587	532			297		
0.061	19.8	13.6	0.687	26.6	579	539			317		
0.105	19.6	13.1	0.668	26.5	593	574			311		
	liquid phase										
0				0.44	462	323	3.03	0.45	4.6	543	176
0.014				1.5	498	343	2.77	0.94	5.5	358	539
0.038	38					385	1.28	3.25	12.2	356	1045
0.061	1					385	1.86	14.4	13.7	335	1395
0.105				4.5	601	399	1.75	24.4	20.7	290	1886

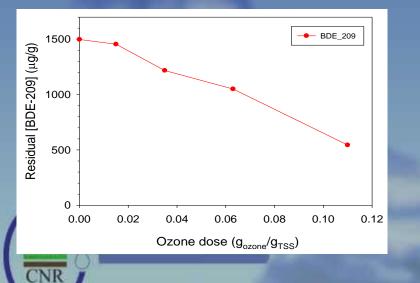
IRSA

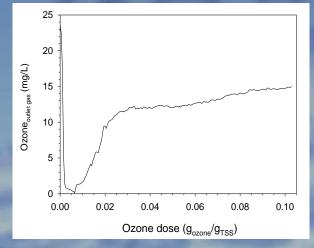
CNR


Ozonation of primary sludge: gross parameters

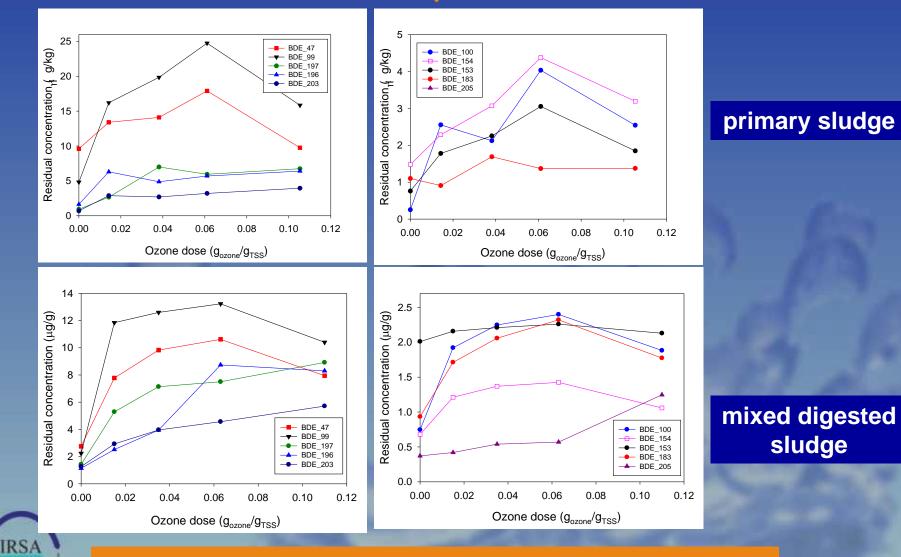

ozone dose g _{ozone} /g _{TSS}	TSS g/L	VSS g/L	VSS/TSS	COD g/L	TN mg/L	N-NH ₄ mg/L	N-NO ₂ mg/L	N-NO ₃ mg/L	P tot. mg/L	IC mg/L	TOC mg/L
	total (liquid + solid phase)										
0	30.3	23.7	0.78	55	1240	280			390		
0.014	29.3	22.4	0.76	51	1230	283			345		
0.038	27.1	20.6	0.76	48.6	1130	297			326		
0.061	26.9	19.8	0.73	48	1186	313			319		
0.105	22.1	16.0	0.73	38.8	1210	294			374		
					iquid ph	ase					
0				1.5	171	98	<dl< td=""><td><dl< td=""><td>24.2</td><td>132</td><td>468</td></dl<></td></dl<>	<dl< td=""><td>24.2</td><td>132</td><td>468</td></dl<>	24.2	132	468
0.014				4.4	296	133	<dl< td=""><td>1.1</td><td>25.5</td><td>77</td><td>1404</td></dl<>	1.1	25.5	77	1404
0.038			5.8	563	168	1	2	25.9	69	1985	
0.061			6.6	695	201	2	28	35.4	27.4	2361	
0.105				7.9	802	224	1	59	46.5	26.2	3038

IRSA


CNR

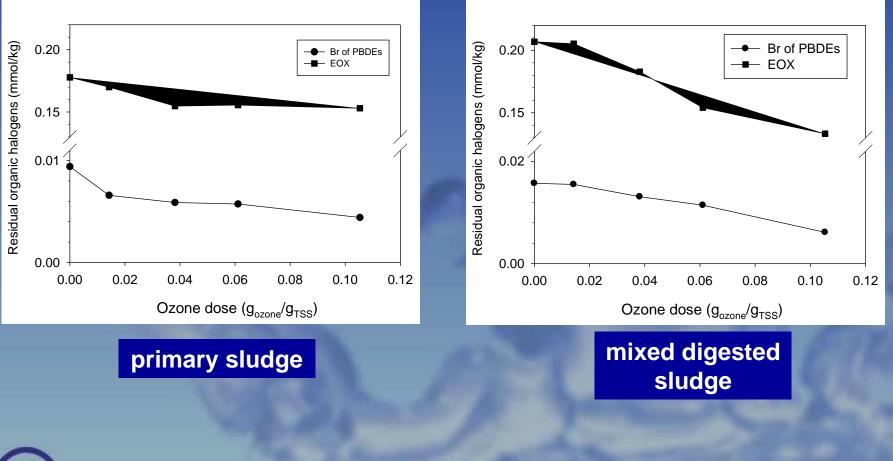

Ozonation of primary and mixed digested sludge: BDE-209 decay and off-gas ozone concentration

Off-gas ozone concentration profile during ozonation of mixed digested sludge.

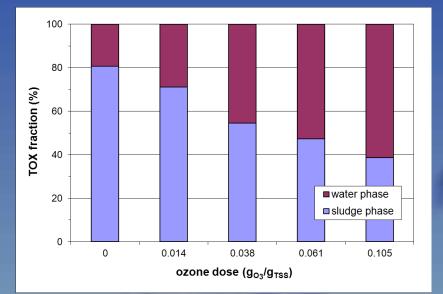


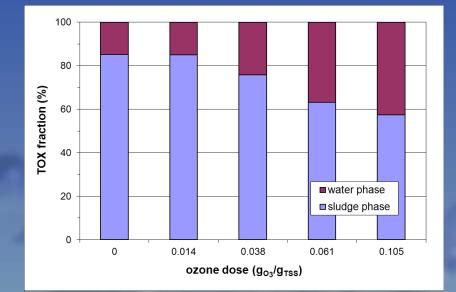
mixed digested sludge ____

primary sludge


Ozonation of primary and mixed digested sludge: PBDEs decay/formation

some debromination occurs in the early stage of the ozonation. Then degradation prevails.


CNR

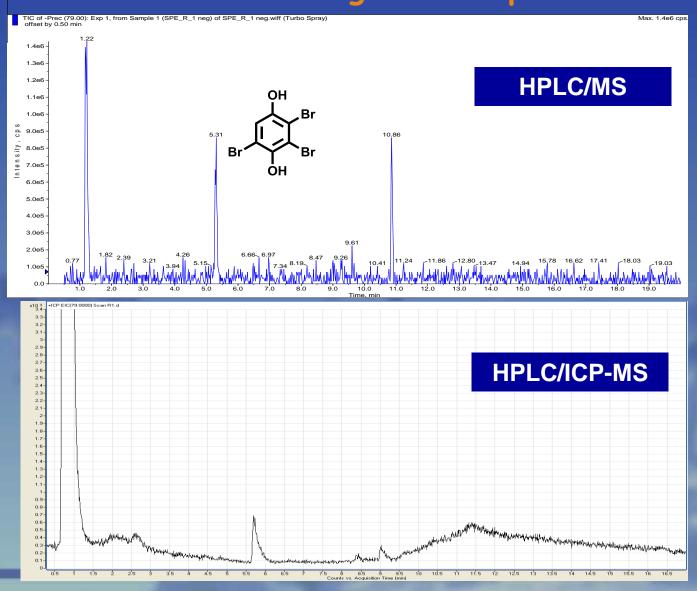

Ozonation of primary and mixed digested sludge: organic bromine and total organic halogens decay

Ozonation of primary and mixed digested sludge: Degradation of total organic halogens in both liquid and solid phase

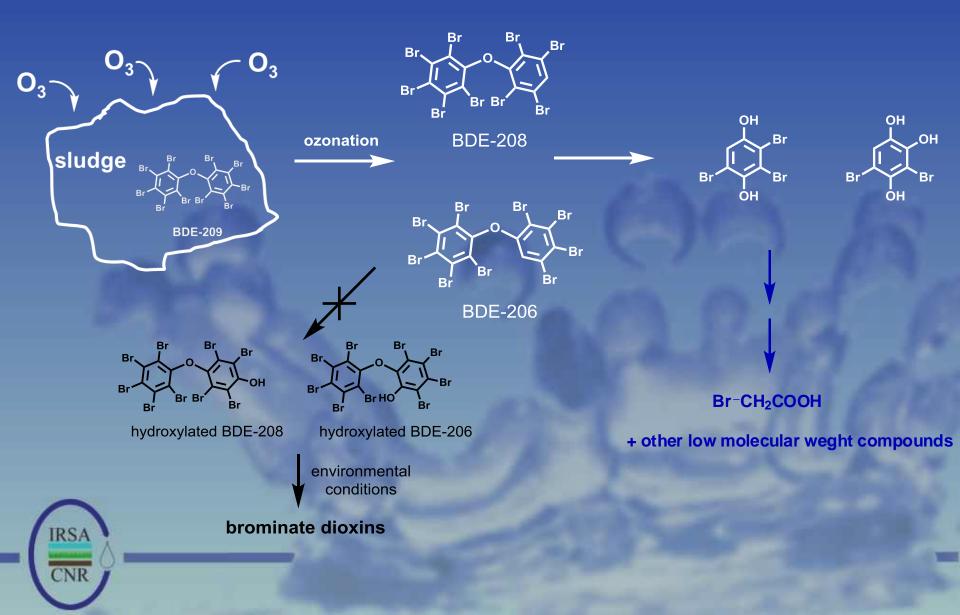
mixed digested sludge

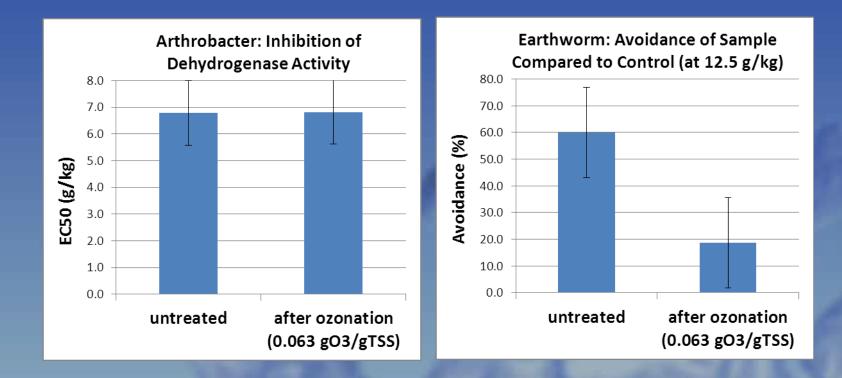
primary sludge

During ozonation a large fraction of organic bromine is transferred to the water phase.



Ozonation of primary and mixed-digested sludge: identification of degradation products


Compound classes	solid phase	aqueous phase		
hydroxylated-BDE (by HPLC/MS)	not detected	not detected		
other by-products (by HPLC/MS)	X	×		
other by-products (by HPLC/ICP-MS)	×	×		
Br ⁻ (by IC)	not detected	×		
Br-organic acids (by IC/MS)	not detected	X		


Ozonation of primary and mixed-digested sludge: identification of degradation products

IRSA CNR Ozonation of primary and mixed-digested sludge: degradation products identification and degradation pathway

Ozonation of primary and mixed-digested sludge: toxicity of treated samples

Conclusions

- Ozonation was effective in degrading brominated flame retardant in both primary and mixed digested sludge;
- BDE-209 (the deca-brominated congener present at the highest concentration in sewage sludge) showed a linear degradation rate vs ozone dose;
- A fraction of transformed halogenated organics are transferred to the aqueous phase (for mixed digested sludge up to 41% at 0.105 g_{ozone}/g_{TSS});
- Ozonation leads to formation of polar organics that have a good water solubility and, therefore, get partitioned between the aqueous and the solid phase

Acknowledgment

IRSA working team: G. Mininni, V. Locaputo, R. Ciannarella

Elisabeth Richter, Anja Coors ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany

This study is part of the EU ROUTES project "Novel processing routes for effective sewage sludge management" (Contract No 265156, FP7 2007-2013) which has been financially supported by the EU Commission within the THEME [ENV.2010.3.1.1-2] Innovative system solutions for municipal sludge treatment and management.