

ISCO - Fenton-like treatment of MtBE contaminated groundwater

Renato Baciocchi

Laboratory of Environmental Engineering University of Rome "Tor Vergata"

- What is ISCO?
- Basics of ISCO design
- Why do we need to cleanup MtBE ?
- Case study
 - Feasibility study of ISCO treatment of MtBE (Lab + Modeling)
 - ISCO pilot-scale test on a MtBE contaminated site
 - Lesson learned and conclusions

ISCO = In-Situ Chemical Oxidation

Application of an AOP to the subsoil

- Hydrogen peroxide (Fenton's reagent)
- Potassium permanganate
- Sodium persulfate (activated)
- Ozone

What is ISCO

In-Situ Chemical Oxidation (ISCO)

Oxidant	Reactive Species	Form	Persistence (1)	
Permanganate	MnO ₄ -	powder/liquid	>3 months	
Fenton's	·OH, ·O ₂ ⁻ , ·HO ₂ , HO ₂ ⁻	liquid	minutes - hours	
Ozone	О _{3'} •ОН	gas	minutes - hours	
Persulfate	·SO42-	powder/liquid	hours - weeks	

from: EPA/600/R-06/072 August, 2006

Oxidant	Redox potential (E°) (V)				
Hydroxyl radical	2.8				
Sulfate radical	2.6				
Ozone	2.07				
Persulfate ion	2.01				
Hydrogen peroxide	1.70				
Permanganate ion	1.68				

What is ISCO

Modified Fenton's process:

- Soil + Water;
- [H₂O₂] high (> 10⁻² M);
- "natural" pH(6 8);
- Catalyst (Fe²⁺, Fe³⁺);
- Chelants (for Fe) or stabilizers of H₂O₂

Fenton-like process:

- Soil + Water;
- [H₂O₂] high (> 10⁻² M);
- "natural" pH (6 8);
- Use of Fe present in the soil;
- Chelates (for Fe) + Stabilizers of H₂O₂

Why do we need to cleanup MtBE?

Methyl-t-butil ether (MtBE)

 is used as an additive for gasoline to improve combustion efficiency and to increase the octane rating as replacement for tetra-ethyl lead

In Europe MtBE is added to gasoline in the range 5 -20% (mean values around 5%)

	Ether Oxygenates							
	MTBE	ETBE	TAME	DIPE	TBA			
Total number of	Total number of sampling events (n)							
	1,239	1,239	650	650	1,239			
Mean (average)	Mean (average) concentration in all European gasoline samples in 2000-2009 (m/m%)							
	5.39	0.91	0.29	0.00	0.03			
Median concent	Median concentration in all European gasoline samples in 2000-2009 (m/m%)							
	4.25	0.00	0.00	0.00	0.01			
Maximum concentration observed in individual sampling rounds (m/m%)								
Concentration (m/m%)	20.43	15.50	11.22	0.88	1.03			
Gasoline type	PULP	PUL	PUL PULP		PULP			
Period	Summer 2001	Winter 2008/2009	Winter Winter 2007/2008 2002/2003		Winter 2000/2001			
Country	Romania	France	Finland	Switzerland				

Concawe, 2010

Why do we need to cleanup MtBE?

Solubility in water (g/l)

Henry's constant (-)

Groundwater contamination with gasoline mixture: MTBE plume is reaching the river first

- + Highly soluble
- + Poorly volatile
- + Poorly biodegradable
- = Effects on groundwater quality

✓ Lab-scale feasibility study

- selection of the most efficient oxidant
- oxidant lifetime/ decomposition kinetics
- optimization of oxidant dosage

✓ Hydrogeological characterization

- indirect estimate of geological characterisitics
- pumping tests (eventually slug tests)
- test with tracers: transmissivity of the aquifer
- Modelling and design of the pilot test
- ✓ ISCO Pilot test operation
- ✓ Design of full scale ISCO remediation

Case study: former petroleum storage tank site

Hydraulic barrier of Pump & Treat

- Only groundwater contamination:
 - MtBE: 2000 ÷ 5000 µg/l;
- Confined aquifer (5 ÷ 6 m depth from ground level);
- Artificial groundwater's gradient ~ 3%
- Fine sand and silt;
- Heterogeneous soil (each meter presents different texture).

Lab-scale feasibility test

- Selection of best oxidant: H₂O₂ (based on preliminary tests)
- Oxidant dosage: concentration 6 % (based on preliminary tests)
- Oxidant lifetime/decomposition kinetics

Hydrogeological characterization

- Aquifer Transmissivity (pumping test) = 4.97 × 10⁻⁴ m²/s;
- Porosity = 35%.

Modeling and design of the pilot test

Modelling study 2D

- Pilot scale layout selection;
- Identification of the most suitable injection rate;

Parameter	Units	Value
Injection flow rate	m ³ /day	2-10
Hydrogen peroxide concentration	%wt	6
Aquifer trasmissivity	m ² /s	5×10^{-4}
Aquifer thickness	m	2 - 4
Hydraulic gradient (with P&T in operation)	%	3
Porosity	-	0.35
H ₂ O ₂ decomposition rate constant (1 st order)	h ⁻¹	0.11
H ₂ O ₂ injection time	h	15

Design of the pilot test layout

- \checkmark N. 3 injection wells
- ✓ N.10 monitoring wells
- ✓ Depth of about 10 meters below ground

Off gases from each well are collected and treated with GAC before venting. 16

Modeling of the ISCO pilot test $(H_2O_2 delivery)$

Hydrogen peroxide distribution of hydrogen peroxide after 15 hours injection

Different flow rates and thickness of the target aquifer were assumed

Modelling study 2D

Conditions simulated with FEFLOW	ROI (m)	O _{2max} (m ³ /h)	Δh (m)
Q = 10 m ³ /day for 15 h (k = 0.11 h ⁻¹ ; thickness 4 m)	2.5 - 4	9	0.6
$Q = 2 \text{ m}^3/\text{day for 15 h} (k = 0.11 \text{ h}^{-1}; \text{thickness 4 m})$	1.2 – 2.5	1.8	0.15
$Q = 10 \text{ m}^3/\text{day for 15 h} (k = 0.11 \text{ h}^{-1}; \text{thickness 2 m})$	3.3 – 5.5	9	0.6
$Q = 2 \text{ m}^3/\text{day for 15 h} (k = 0.11 \text{ h}^{-1}; \text{ thickness 2 m})$	1.5 – 3.5	1.8	0.15

ROI = Radius of Influence

 O_{2max} = Maximum stoichiometric O_2 production by H_2O_2 decomposition Δh = Estimated increase of water head near the injection well

Pilot plant

Injection skid Q_{inj} = 2 ÷10 m³/d for each injection well

Pilot plant

Soil vapor extraction Q _{off-gas} = 20÷100 m³/h

Pilot plant and injection/monitoring wells

Pilot plant

Injection and monitoring wells

Pilot plant management

- Before H₂O₂ injection, a chelating agent (EDTA) solution was injected;
- One injection cycle was completed (16h of injection):
 - $H_2O_2 6\%$, $Q_{inj} = 2 \text{ m}^3/\text{d}$ (for each inj. well)

Groundwater monitoring during injection (H₂O₂)

Results of the pilot-scale test - H_2O_2 (%wt) contour lines (axis scale in m):

(a) after 6h injection;

(b) after 11h injection.

Groundwater monitoring during injection (Redox)

Results of the pilot-scale test - Redox (mV) contour lines (axis scale in m):

- (a) after 6h injection;
- (b) after 12h injection.

Groundwater monitoring during injection (pH)

Results of the pilot-scale test - pH contour lines (axis scale in m):

- (a) after 6h injection;
- (b) after 12h injection.

Off-gas monitoring during injection (O₂)

Results of the pilot-scale test - O_2 (%) contour lines (axis scale in m):

(a) after 6h injection;

(b) after 12h injection.

Off-gas monitoring during injection (CO₂)

Results of the pilot-scale test - CO_2 (%) contour lines (axis scale in m):

(a) after 6h injection;

(b) after 30h injection.

Groundwater analysis (MtBE)

Results of the pilot-scale test -- MtBE (µg/L) contour lines (axis scale in m):

(a) after chelating agent injection;

(b) after H_2O_2 injection.

Groundwater analysis (TBA)

Results of the pilot-scale test -- TBA (μ g/L) contour lines (axis scale in m) :

(a) after chelating agent injection;

(b) after H_2O_2 injection.

Groundwater analysis (TPH)

Results of the pilot-scale test -- TPH (μ g/L) contour lines (axis scale in m) :

(a) after chelating agent injection;

(b) after H_2O_2 injection.

Secondary effects: metal mobilization

Fe

Mn

31

It was performed on the carbon dioxide produced by MtBE mineralization

Measured CO₂: estimated from the flow rate of each off-gas extraction well (approximately 1.5 m3/h) and the corresponding CO_2 concentration measured at different time intervals.

Calculated CO₂:
$$CO_2 = \gamma_i \cdot \frac{M_{in,i} - M_{out,i}}{MW_i}$$

MtBE
$$C_5 H_{12} O + \frac{15}{2} O_2 \rightarrow 5 C O_2 + 6 H_2 O$$

TBA
$$C_4 H_{10} O + 6O_2 \rightarrow 4CO_2 + 5H_2 O_2$$

TPH
$$C_n H_m + \left(n + \frac{m}{4}\right)O_2 \rightarrow nCO_2 + \frac{m}{2}H_2O$$

Mass balance

Two assumptions were made

W: MtBE only in the water phase

W+S: MtBE both in the water and soil phase

$$C_{s} = C_{w} \cdot k_{oc} \cdot f_{oc}$$

Compound	Initial Mass (g)		Mass after ISCO (g)		Mass removed (g)		Calculated CO ₂ (mol)		Measured CO ₂
	W	W + S	W	W + S	W	W + S	W	W + S	
MtBE	169	171	26.1	26.4	143	145	8.1	8.2	78
TBA	184	185	41.2	41.3	143	143	7.7	7.7	
ТРН	108	1499	24.7	343.9	83	1155	5.8	79.8	
Total	461	1855	92	412	369	1443	22	96	

Lessons learned: H₂O₂ delivery

Possibly the oxidant propagation could have addressed only the more permeable layer, where probably most of MtBE contaminated groundwater should be present.

Lessons learned (H₂O₂ delivery vs. MtBE degradation)

Good MtBE removal by 1 peroxide injection (8 wells about 13 monitored wells have met the cleanup goals).

No problem with gas production or local overheating.

- The feasibility test and the modeling activitied allowed for a proper design of the ISCO pilot-scale tests
- Where hydrogen peroxide delivery was effective, MtBE, TBA and TPH were effectively oxidised by ISCO using Fenton's reagent and mostly mineralized
- Issues related to soil heterogeneity probably affected the delivery of the oxidant and the effectiveness of the ISCO treatment

- Iason Verginelli, Daniela Zingaretti post-docs in our group
- Eni, for supporting this research and for pilot plant data