

Application of Ultrasound for the Degradation of Organic Pollutants in Waters

Ricardo A. Torres-Palma

Universidad de Antioquia, Medellin, Colombia

Antibiotics: Recalcitrants to the conventional primary and secondary processes in MWWTP

A simplified part of the water cycle

GRUPO DE INVESTIGACIÓN en Remediación Ambiental y Biocatálisis

Advanced Oxidation Processes

Ultrasound

Audible sound Sonochemical reactions Medical applications

Conventional ultrasound

Fate of bubbles in liquids under ultrasound

Fate of bubbles in liquids under ultrasound

Hydrophilic compounds

HO°

Emergent pollutants: Antibiotics

Superbugs

Antibiotics consumption

Advanced Oxidation Processes

✓ Whether or not ultrasound can be of special interest: To compare the ability of the sonochemical system with photo-Fenton, TiO₂ photocatalyssis and electrochemical oxidation to eliminate the antimicrobial activity of water solutions containing oxacillin in presence of some pharmaceutical additives

\checkmark TiO₂ photocatalysis:

- $0.05 \text{ mg } \text{L}^{-1} \text{ TiO}_2$
- 150 W ($\lambda_{max} = 365 \text{ nm}$) 100 mL

- ✓ Photo-Fenton:
- 90 μ M Fe²⁺
- $1000 \ \mu M H_2 O_2$
- $150 \text{ W} (\lambda_{\text{max}} = 365 \text{ nm})$
- 100 mL

Experimental part : Photochemical systems

Oxacillin: $47.23 \mu mol L^{-1} (20 mg L^{-1})$ Initial pH = 5.6

\checkmark Ultrasound: 60 W (275 kHz) • 250 mL

✓ Anodic oxidation:

- Anode: Ti/IrO₂
- Catode: Zr
- 0.0625 M NaCl
- 5 mA cm⁻²
- 150 mL

Experimental part : Ultrasonic and sonochemical systems

Oxacillin: $47.23 \mu mol L^{-1} (20 mg L^{-1})$ Initial pH = 5.6

Antimicrobial activity (AA): Inhibition halo methodology (*Staphylococcus aureus*)

✓ Oxidative species: Iodometry (UV) ✓ Oxacillin (HPLC) ✓ Initial organic by-products (HPLC/MS)

Experimental part: Analysis

Results and discussion: Ultrasound action Antibiotic degradation vs Antimicrobial removal

GRUPO DE INVESTIGACIÓN en Remediación Ambiental y Biocatálisis

\checkmark

E.A. Serna-Galvis et al. / Chemical Engineering Journal 284 (2016) 953–962

Results and discussion: By-products upon ultrasonic action

GRUPO DE INVESTIGACIÓN en Remediación Ambiental y Biocatálisis

\checkmark

E.A. Serna-Galvis et al. / Chemical Engineering Journal 284 (2016) 953–962

Results and discussion: By-products upon ultrasonic action

Mannitol (MAN)

Handbook of Pharmaceutical Excipients, Sixth. London: Pharmaceutical Press, 2009.

Results and discussion: Pharmaceutical additives

Antibiotic production

10 times more concentrated than OXA

Calcium carbonate (CC)

Results and discussion: Antibiotic degradation upon ultrasonic action

W

r_d (μΝ

E.A. Serna-Galvis et al. / Science of the Total Environmnet, In press

Table 1. Rates of pollutant degradation (rd) in different additives

Vater	OXA	OXA + MAN
M min ⁻¹)	1.4±0.0	1.3±0.1

OXA + CC

1.4±0.1

E.A. Serna-Galvis et al. / Science of the Total Environmnet, In press

Results and discussion: Antibiotic degradation vs Antimicrobial removal

Kow Hydrophobicity indicator

Sustance OXA MAN $CC(HCO_3^-)$

Results and discussion: Antibiotic degradation vs Antimicrobial removal

Kow 2.38 -3.10 -4.01

Volatile compounds

Hydrophobic compounds

Hydrophilic compounds

Results and discussion: Antibiotic degradation vs Antimicrobial removal

AA/AAo = Normalized evolution of AA k = kinetic constant (min⁻¹); t = time (min)

AA evolution

E.A. Serna-Galvis et al. / Science of the Total Environmnet, In press

Results and discussion: Antibiotic degradation vs Antimicrobial removal

E.A. Serna-Galvis et al. / Science of the Total Environmnet, In press

Results and discussion: Antibiotic degradation vs Antimicrobial removal

Mannitol (MAN)

Handbook of Pharmaceutical Excipients, Sixth. London: Pharmaceutical Press, 2009.

Results and discussion: Pharmaceutical additives

Antibiotic production

10 times more concentrated than OXA

Mannitol (MAN)

Sodium lauryl ether sulfate (LES)

Results and discussion: Pharmaceutical additives

Handbook of Pharmaceutical Excipients, Sixth. London: Pharmaceutical Press, 2009.

$$\begin{bmatrix} 0 \\ \vdots \\ Ca^{2+} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ Ca^{2+} \end{bmatrix}^{2-}$$

Results and discussion: Pharmaceutical additives

ChemIDplus Adv. URL http://chem.sis.nlm.nih.gov/chemidplus

Results and discussion: Pharmaceutical additives

Kow Hydrophobicity indicator

Substance OXA MAN $CC(HCO_3^-)$ TA LES

Kow 2.38 -3.10 -4.01 -1.08 1.87

r_k =1, no effect

 $r_k < 1$, inhibitor

$[Fe (RCOO)]^{2+} + hv_{(UV-Vis)} \rightarrow Fe^{2+} + R \bullet + CO_2$ $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^-$

Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84

Results and discussion: Pharmaceutical additives

Appl. Catal. B Environ. 158-159 (2014) 30-37

Bisphenol A: 2,2-bis(4-hydroxyphenyl)propane

- Plastic industry

- Endocrine disruptor

Experimental device

300-800 kHz, 20-80 W $300 \text{ mL}, 20 \pm 1 \text{ °C}$ BPA 0,15-460 μmol L⁻¹ Gas: air, Ar, O₂ pH 3-9

Analyses UV HPLC HPLC/MS DQO COT

B rates Initia

Characteristics of sonochemical BPA degradation

Characteristics of sonochemical BPA degradation

BPA (116 uM) in natural water

pН	$Cl^{-}(mg L^{-1})$	$Ca^{2+}(mg L^{-1})$	$Na^+(mg L^{-1})$
7.6	10	486	9.1

Characteristics of sonochemical BPA degradation

SO_4^{2-} (mg L⁻¹) HCO₃⁻ (mg L⁻¹)

1187

Sonochemical elimination of BPA in natural water

BPA: 116 μM ; 300 mL Frequency: 300 kHz; Power: 80 W

120

100

80 >ration 60 Concent

Sonochemical elimination of BPA in natural water

BPA: 0.15 μM (34.2 μg L⁻¹) ; 300 mL Frequency: 300 kHz; Power: 80 W

Sonochemical elimination of BPA

Influence of anions **BPA concentration:** 0.15 μM

(pH=8.3)

BPA (0.12 μ M, 27 μ g/L) elimination upon ultrasonic irradiation in water for different sodium bicarbonate concentrations

Ultrasound: 300 kHz, 80 W, 500 mL

BPA (0.12 μ M, 27 μ g/L) elimination upon ultrasonic irradiation in water containing different anions

Ultrasound: 300 kHz, 80 W, 500 mL.

Enhancement of the BPA degradation rates would involve carbonate and bicarbonate ions

$CO_3^{-\circ} + M \rightarrow CO_3^{2-} + Mox$ [10⁵ < k < 10⁹ M⁻¹ s⁻¹]

It is possible to enhance the efficiency of ultrasound action ?

Frecuencia: 300 kHz; potencia: 80 W; volumen: 300 mL; gas: oxigeno; BPA: 118 μmol L⁻¹

GRUPO DE INVESTIGACIÓN en Remediación Ambiental y Biocatálisis

Advanced Oxidation Processes

Evolution of BPA and TOC

Ultrasound/Fe(II)/UV

Hydrogen peroxide evolution

	120
	100
	80
ation	60
centra	40
	20

Ultrasound/Fe(II)/UV

Temps, min

 $H_2O_2 + hv \rightarrow 2^{\circ}OH$

 $Fe(II) + H_2O_2 \rightarrow Fe(III) + ^OH + OH^-$

Interface bulle -solution -

Ultrasound/Fe(II)/UV

Combining ultrasound with TiO₂ photocatalysis

Energie

Photo-réduction

$e^{-} + H_2O_2 \rightarrow OH + OH$

Photo-oxydation

Experimental part

* Photocatalyse: Suntest TiO_2 P-25 0.01-1 g L⁻¹ * Ultrasons : 300 kHz, 80 W

600 mL BPA 118 μM, pH 3, O₂ 22±2 °C

> Analyses : HPLC COD H₂O₂

50 % of BPA elimination

Absorbance

(C/Co) BPA

Ultrasons/TiO2/lampe

Evolution of BPA and DOC

Combining ultrasound with TiO2 photocatalysis

Ultrasons/TiO₂/lampe

Absorbance

Ultrasound/TiO₂/UV

After 4 h of BPA treatment *TiO*₂ 0,05 g L⁻¹

- 0 h
- Ultrasons 4 h
- Photocatalyse 4 h
- Ultrasons/Photocatalyse 4 h

Temps de retention, min

- subsequent biological process.

Concluding remarks

• Ultrasound can selectively remove antibiotics and its associated AA if matrix components have a more hydrophilic character.

Combination of ultrasound with other AOPs can be a sinergistic alternative to the complete removal of organic pollutants

• Sonotreated water can be completely mineralized using a

Email: ricardo.torres@udea.edu.co

Colombia

November 14 – 17, 2017 Medellín (Guatapé), Colombia

Open registration

3rd Iberoamerican Conference on Advanced Oxidation Technologies (III CIPOA)

2nd Colombian Conference on Advanced **Oxidation Processes (II CCPAOX)**

Stephen

Before or on September 12t

Contraction of the second seco

COP	USD	COP	U	
\$ 210.000	\$ 81	\$ 300.000	\$	
\$ 560.000	\$ 215	\$ 800.000	\$	
\$ 805.000	\$ 310	\$ 1.150.000	0	
\$ 875.000	\$ 337	\$ 1.250.000		

E-mail cipoa2017@udea.edu.co Phone +57 (4) 2198926

cipoa2017.com

After September 12th

JSD

\$ 115

\$ 308

\$ 442

\$ 481

COLCIENCIAS

Fonds National Suisse Schweizerischer Nationalfonds Fondo Nazionale Svizzero Swiss National Science Foundation

