

COST Action ES1403

New and emerging challenges and opportunities in wastewater reuse

Chair: D. Fatta-Kassinos, UCY Vice Chair: C. Manaia, UCP

Porto, Portugal 12th of July, 2017

Thank you!

Local Organisers

Dr. Adrián M.T. Silva

Dr. Vítor J.P. Vilar

The European PhD School on Advanced Oxidation Processes

Dr. Luigi Rizzo, Chair

University of Salerno, Italy

OPs PhD School

Thank you!

NEREUS COST Action ES1403 Summer School organisers

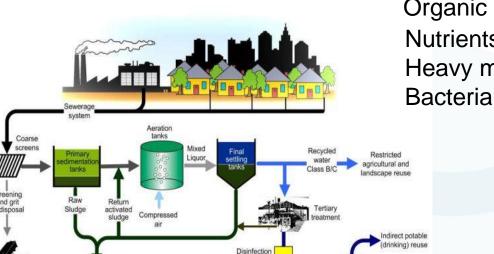
- Dr. Luigi Rizzo
 University of Salerno, Italy, Leader of WG 4
- Dr. Sixto Malato
 Plataforma Solar de Almería, CIEMAT, Spain, Vice Leader of WG 4
- Dr. Celia Manaia
 Universidade Católica Portuguesa, Portugal, Vice Chair
- Mr. Toumazis Toumazis
 Nireas-IWRC, UCY, Nereus COST Action administrator
- **Dr. Deniz Caraca** (Science Officer)
- Mr. Christophe Peeters (Administrative Officer)

NEREUS COST Action

Water Scarcity/Stress

By 2025, 1800 million people are expected to be living in countries or regions with "absolute" water scarcity (<500 m³ per year per capita), and two-thirds of the world population could be under "stress" conditions (between 500 and 1000 m³ per year per capita).

Source: FAO, 2017


The evolution of wastewater management

Sir E. Chadwick raised the first question of the need to purify wastewater in a report in 1842 in England.

The germ theory by Koch and Pasteur in the 1880s heralded a period of scientific enlightenment.

Since the 1980s, giant strides have been made in the physical, biological, and chemical sciences with respect to the fundamentals involved.

and/or ultra

Agricultural

Organic load (<20 mg/L, TOC)
Nutrients
Heavy metals

Resou

Resource recovery Re-use

Biogas Bioplastics Biosolids

Energy-sufficient

Cost ACTION Contaminants of Emerging Concern

CEC

Brominated Flame Retardants

Siloxanes (cosmetic: to soften, moisten)

Quats

Parabens (parahydroxybenzoates or alkyl esters of parahydroxybenzoic acid, preservatives)

Biocides/Antibacterial (triclosan)
Roof-paints (mecocrop, terbutryn)

Sweeteners (sucralose)

Fragrances

Bisphenol A (epoxy resins - food and drinking packaging - water pipes)

Phthalates (plasticizers - toys, clothing, building materials)

Alkyphenolic compounds (surfactants, cosmetics)

PFOA & PFOS (Perfluorooctanoic acid Perfluorosulfonates)

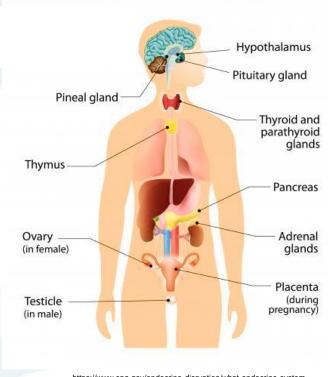
Disinfection by-products

Algal toxins

Hormones (natural / synthetic)

Pharmaceuticals

Illicit drugs



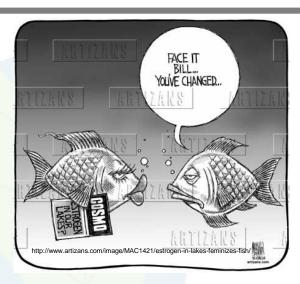
What do we know so far?

tumors, neurotoxicity, DNA alterations, kidney diseases...

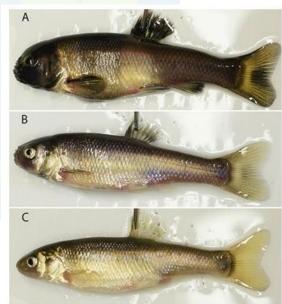
... cause disruption of the endocrine system

- Agonistic effect
- Antagonistic effect
- Interfere with the metabolic processes in the body, affecting the synthesis or breakdown rates of the natural hormones

https://www.epa.gov/endocrine-disruption/what-endocrine-system


reproduction, immunity, behavior, growth and development

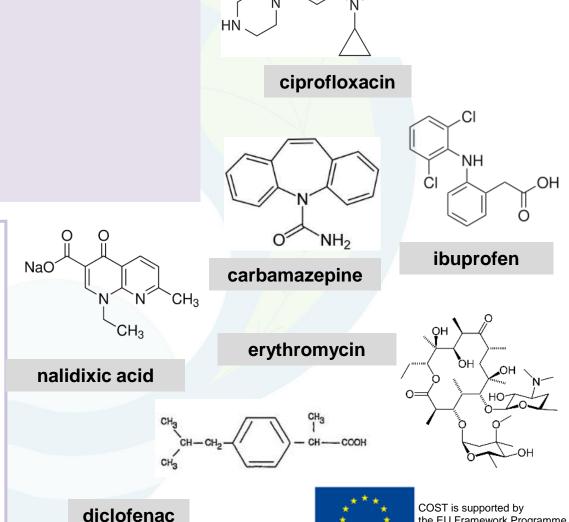
So far...about pharmaceuticals



Two cases of direct cause and effect identified (wildlife):

- ... that of diclofenac, used as a veterinary drug for cattle. Tens of millions of vultures in Asia died feeding on the corpses of treated cows.
- ... feminization of male fish, reported in many countries; ethinylestradiol.

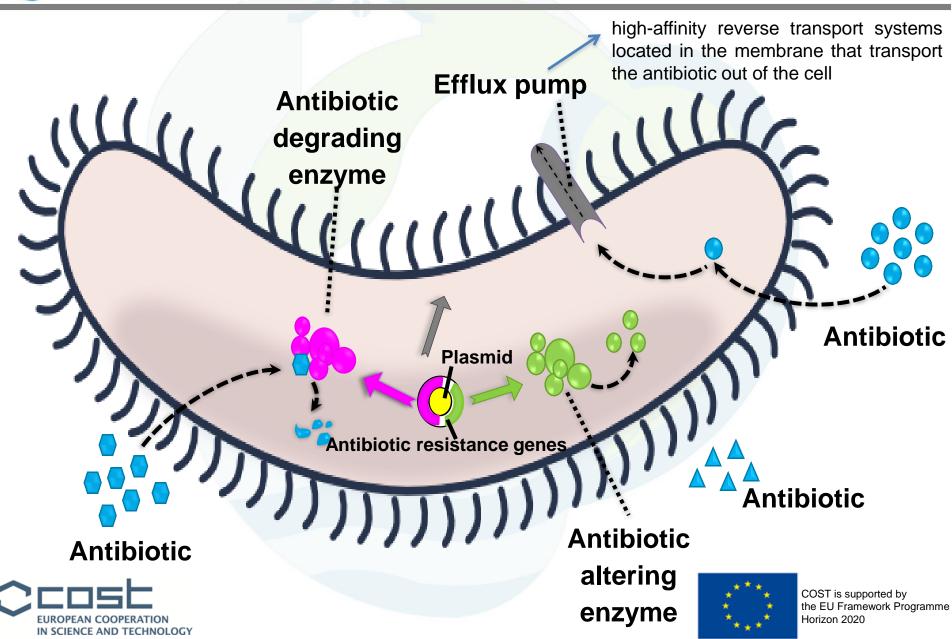
Possibility of other effects on wildlife, current or future.



Fish A is a normal male fathead minnow. Fish C is a normal female. Fish B is a male that was exposed to female hormones and looks more like a female.

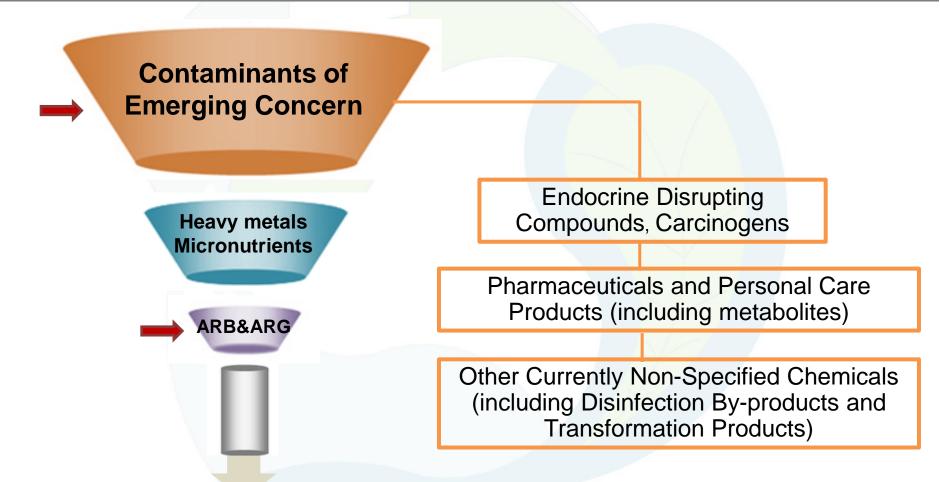
Exposure Factors / Characteristics

- **Constant introduction to environment**
- **Synergy**
- **Chronic Effect**
 - Long-term
 - Low-dosage
- Complex molecules, often with multiple ionic sites
- Strongly influenced by pH
- Some tend to partition to aqueous phase/solid phase
- biologically Designed to be active


COOH

the EU Framework Programme

Horizon 2020



Antibiotic Resistance

Treated wastewater effluent load according to current knowledge

Potential load of wastewater intended for reuse applications

WW reuse and quality parameters

The European Council Directive 91/271/EEC concerning urban wastewater treatment in Article 12 states that ... "Treated wastewater shall be reused whenever appropriate".

To date, countries with organized wastewater reuse schemes have developed national or regional regulations/guidelines based on **conventional chemical** and **microbiological parameters**.

Parameter
Chemical Oxygen Demand
Biochemical Oxygen Demand
Suspended Solids
Heavy metals
Faecal coliforms
Intestinal worms
Basic toxicity testing (if any)

NEREUS COST Action

New and Emerging challenges and opportunities in wastewater **REUS**e

Emerging Challenges of wastewater reuse

Although reuse is accompanied by a number of benefits, several questions still exist:

Current Open Challenges:

- ✓ contaminants of emerging concern
- ✓ their transformation products (through biotic and abiotic processes)
- ✓ their potential uptake by crops
- ✓ the effects that these contaminants may induce in the environment
- ✓ the evolution and release of antibiotic resistance
- ✓ the identification of technologies that are able to remove such contaminants from wastewater.
- ✓ the identification of means and solutions to overcome these problems, and promote safe reuse practices.

Primary Objective of NEREUS

A multi-disciplinary network to determine which of the current challenges related to wastewater reuse are the most concerning ones in relation to public health and environmental protection, and how these can be overcome.

Wastewater reuse applications

irrigation, street cleaning, fire protection systems, washing, toilet flushing, dust control

Agricultural uses

food crops commercially processed, pasture for milking animals, fodder, aquaculture

Industrial uses

process water, cooling water, recirculating cooling towers, making concrete, dust control

Recreational uses

golf courses irrigation, recreational impoundments

Environmental uses

aquifer recharge, stream augmentation, wildlife habitant

Potable uses

aquifer recharge for potable use, augmentation of surface potable supplies, treatment until potable water quality

COST Countries

Montenegro

Netherlands

International Partner Countries

Australia

Pakistan

Singapore

South Korea

United States of America

Near Neighbor Countries

Georgia

Jordan

United

Kingdom

Romania

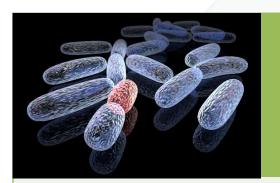
Tunisia

Ukraine

Finland

WGs Members (statistics)

	Male	Female	Total
Action	200 (194)	170 (164)	370 (358)
WG1	44	49	93
WG2	37	19	56
WG3	19	21	40
WG4	90	67	157
WG5	10	14	24
ECIs	87	87	174


Action Working Groups

Working Group	Title	Leader / Vice Leader
WG1	Microbiome and mobile antibiotic resistome in treated www and in downstream environments	Eddie Cytryn Thomas Berendonk
WG2	Uptake and translocation of organic microcontaminants and ARB/ARG in crops	Josep Maria Bayona Benny Chefetz
WG3	Effect-based bioassays required for ww reuse schemes	Jaroslav Slobodnik Norbert Kreuzinger
WG4	Technologies efficient/economically viable to meet the current ww reuse challenges	Luigi Rizzo Sixto Malato
compliance guideline law Regulation rule procedure conduct authority constraint	Risk assessment and policy development	Lian Lundy Mario Carere

Microbiome and mobile antibiotic resistome in treated wastewater and in downstream environments

- Propose the standardization of the ARB+ARG detection and quantification in water and soil samples
- Identify most prevalent and/or hazardous ARB+ARG with ability to persist, spread and proliferate after wastewater disposal + reuse scenarios
- Assess the fate, if possible quantitatively, of ARB+ARG discharged in treated wastewater and released in surface water or soils
- Identify the conditions favoring ARB+ARG persistence or proliferation

Uptake and translocation of organic microcontaminants and ARB/ARG in crops

- Consolidate knowledge on the uptake and translocation of microcontaminants and ARB+ARG in crops
- Identify the main physicochemical characteristics affecting the uptake and translocation of microcontaminants and ARB+ARG
- Develop a set of recommendations regarding the minimisation of biomagnification processes and environmental and human health impacts associated with wastewater reuse

Effect-based bioassays required for wastewater reuse schemes

- Assessment of the existing information available in the literature with regard to biological effects and wastewater based on different tests applied
- Identification of potential relationships between the physicochemical characteristics of the wastewater and the biological effects derived
- Determination of the most appropriate and relevant bioassays / bioassay battery for wastewater quality evaluation
- Propose the harmonization of the procedures used during the application of the bioassays determined

Technologies efficient/economically viable to meet the current wastewater reuse challenges

- Understand the fate of microcontaminants during treatment
- Assess the fate of ARB+ARG during biological processes and characterize removal mechanisms (in collaboration with WG1)
- Assess the effect of AOPs on ARB+ARG and the subsequent risk for effluent reuse related to oxidation TPs and residual release (in collaboration with WG2)
- Assess the economical feasibility of AOPs compared to more conventional advanced treatment processes/technologies in wastewater reuse
- Identify the combinations (and economical feasibility) between biological, advanced treatment and required reuse infrastructure in terms of global efficiency/compliance with standard parameters (e.g., BOD, COD, N, P etc.) and microcontaminants including ARB+ARG

Risk assessment and policy development

- Develop quality criteria for selected contaminants of emerging concern and ARB+ARG for wastewater reuse
- Propose a battery of assays for wastewater evaluation for reuse purposes
- Develop a risk assessment framework for wastewater reuse
- Propose guidelines/suggestions on possible technologies and systems able to produce wastewater of quality in compliance to the quality criteria to be set (with respect to ARB+ARG, biological risks, etc).
- Overcome existing barriers in the field of wastewater reuse and valorize wastewater as a non-conventional water resource

Nereus Coordinators/Facilitators

- STSMS: F. Walsh, E. Heath, H. R. Andersen
- BSC: H. M. Schaar, M. Vasquez
- Dissemination & Outreach activities:
 M. Suarez, M. de Kreuk
- Equal Opportunities: D. Lambropoulou, T. Kosjek
- Training events: G. Li Puma, Th. Wintgens, E. Meers
- Inter-Working Group Facilitator: J.Drewes
- WG secretaries

First Meeting, May 2015

Barcelona, Spain

Second Meeting, October 2015

Luxembourg

Third Meeting, March 2016

Fourth Meeting,

September 2016

Sarajevo, Bosnia & Herzegovina

WGs Meetings

WG1 Training Event

Total number of STSMs

- **GP1** (1/1/2015-31/8/2015)
 - 1. Massimiliano Marvasi
- **GP2** (1/9/2015-30/4/2016)
 - 1. Popi Karaolia
 - 2. Ivone Vaz-Moreira
 - 3. Francisco Pedrero Salcedo
 - 4. Rui Ribeiro
 - 5. Therese Kettner
 - 6. Sinead Murphy
 - 7. Felipe Lira
- **GP3** (1/5/2016-30/4/2017)
 - 1. Anna Wegrzyn
 - 2. Ana Martinez Piernas

- 3. Saulo Della Giustina
- 4. Carmine Fiorentino
- 5. Roberto Marano
- 6. Jessica Subirats Medina
- 7. Marjeta Cesen
- **GP4** (1/5/2017-30/4/2018)
- + 5 more
 - 1. Tjaša Gornik
 - 2. Chmingui Walid
 - Milena Milaković
 - 4. Heidemarie Schaar

Total STSMs: 19 +

nereus cost action es 1403 STSMs during GP3 (1/5/16-31/4/17)

Name	Topic	From	То	Host	Days
Dr. Saulo Della Giustina	Chlorination of Wastewaters- Effects on ARG&B and Antibiotics	Catalan Institute of Water Research- ICRA, Girona, Spain	NIREAS-International Water Research Center, School of Engineering, University of Cyprus	Dr. Despo Fatta- Kasinos	36 26/6-31/7
Mr. Carmine Fiorentino	Fate and elimination of organic chemicals during wastewater treatment: modelling implementation and simulation	University of Bologna, Italy	Technical University of Denmark, Denmark	Prof. Stefan Trapp	28 22/8-18/9
Ms Ana Belen Martinez-Piernas	Behaviour of Carbamazepine and its transformation products in soil and lettuce grown under controlled conditions	University Of Almeria, La Canada De San Urbano, <mark>Spain</mark>	CNR Istituto di Ricerca sulle Acque, Italy	Dr. Giuseppe Mascolo	9 19/9-18/12
Dr. Anna Wegrzyn	Distribution of sulfonamide resistance genes in bacterial endophytes isolated from <i>Miscanthus sp.</i>	Silesian University of Technology, Poland	Helmholtz Zentrum München German Research Center for Environmental Health, Germany	Dr. Peter Schröder	45 1/11-15/12
Dr Marjeta Cesen	Optimisation of a novel passive sampler based on diffusion in hydrogel for the determination of timeaveraged concentrations of selected compounds of emerging concern in wastewater	Jožef Stefan Institute, <mark>Slovenia</mark>	Research Centre for Toxic Compounds in the Environment, Czech Republic	Dr. Branislav Vrana	66 24/2-30/4
Ms Jessica Subirats Medina	Effects of WWTP effluents and antibiotics on the composition of natural bacterial communities and their associated resistome	ICRA, <mark>Spain</mark>	National Research Council of Italy, Italy	Dr. Gianluca Corno	62 27/2-29/4
Mr Roberto Marano	Integron-associated ARG in wastewater	Agricultural Research Organization, Israel	University of Helsinki, Finland	Dr. Marko Virta	15 9/4-23/4

nereus cost action estado STSMs during GP4 (1/5/17-31/4/18)

Name	Торіс	From	То	Host	Days
Ms. Tjaša Gornik	Application of Molecularly Imprinted Polymers (MIPs) in wastewater treatment and reuse	Jožef Stefan Postgraduate School, Ecotechnology, Slovenia	"Department of Biomedical SciencesFaculty of Health and Society, Malmö University", Sweden	Dr. Börje Sellergren	90 03/08-31/10
Mr. Chmingui Walid	Identification and quantification of pharmaceutical compounds in environmental matrices under real field conditions of wastewater reuse in agriculture	National Research Institute for Rural Engineering, Water, and Forestry (INRGREF), Tunisia	Nireas-IWRC, University of Cyprus, Cyprus	Dr. Despo Fatta- Kassinos	31 01/10-31/10
Ms. Milena Milaković	Characterization of mobilome that is involved in antibiotic resistance dissemination in aquatic environment	Ruđer Bošković Insitute, <mark>Croatia</mark>	Helmholtz Zentrum Munchen, Research Unit for Comparative Microbiome Analysis, Germany	Dr. Michael Schloter	55 9/10-3/11
Ms. Heidemarie Schaar	Toxicological evaluation of ozonation and subsequent activated carbon filtration for advanced wastewater treatment as a basis for water reuse with standardised bioassays	Vienna University of Technology, Austria	BioDetection Systems b.v., The Netherlands	Dr. Bram Brouwer	5 2/10-6/10

Blue Circle Society

The scientific network of ESRs and PhD students

The Blue Circle is able to **meet separately** during the WGs meetings and **come up with suggestions** and **ideas** that are relayed to the <u>WGs leaders</u> and participants, the <u>steering group</u> and the <u>management</u> committee.

Blue Circle Society Coordinators

Dr. Marlen Vasquez

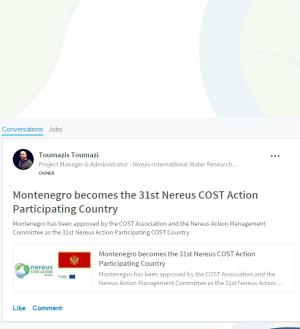
Dr. Heidemarie Schaar

Blue Circle Society

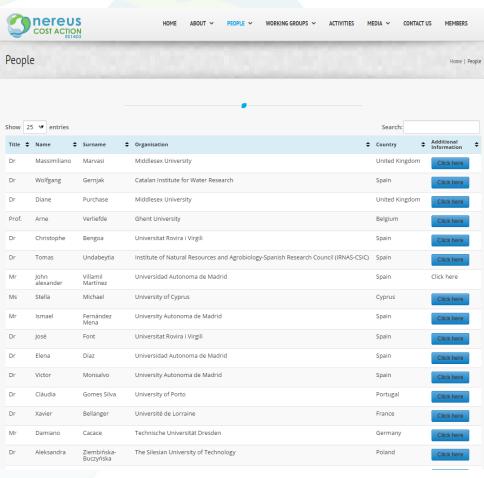
MISSION

The Blue Circle activities:

- participate in training schools and STSMs in order to transfer knowledge among participating institutions
- actively participate in all WGs and fulfil specific tasks
- establish links between the Blue Circle and other relevant ECI-networks
- identify the on-going relevant research projects and any other similar activities regarding the Action
- **implement continuous dissemination activities** (information, methodologies and results through conventional and social media)
- organize activities of science communication in various countries
- present its work and outcomes during STSMs and also present how the participation in the Action helped and/or enhanced the professional maturity of the ECIs, during a special session in the final conference.



Social Media



http://www.nereus-cost.eu

On-going and forthcoming activities



Training school on "the uptake of microcontaminants and ARB&ARG testing in wastewater and soil samples"

WG2 - Training School

Thematic Areas

- Uptake and bioaccumulation of pharmaceuticals by crops grown in fields irrigated with reclaimed wastewater
- Solid phase extraction of crops and plants + hands-on experience
- Chromatographic analysis of micropollutants in crops and plants + demonstration
- Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals plants
- Evaluation of stress related physiological markers of plants (physiological, biochemical and molecular) (real time qPCR, phasmatophotometric methods, enzymatic activity assays, etc.) + hands-on experience
- Methodologies for public health risk assessment



WG2 - Training School

Study tours

- Visit to WWTPs that combine wastewater reuse schemes
- Study tour to long-term (more than 10 years) reclaimed wastewater irrigated sites and collection of samples of soils and fodder plants for further analysis in the lab (hands-on experience)
- Study tour to the **greenhouse** of the Agricultural Research Institute of Cyprus where plants are irrigated with reclaimed wastewater
- Visit to the **experimental station** of the Agricultural Research Institute of Cyprus where control field experiments are taking place.

Challenges and Solutions related to Xenobiotics and Antimicrobial Resistance in the Framework of Urban Wastewater Reuse:

Towards a Blue Circle Society

Nireas International Water Research Center (Nireas-IWRC) of the University of Cyprus is proud to announce the XENOWAC II conference, a decade after the first XENOWAC conference (XENOWAC I) took place in Cyprus in March 2009. The Conference embraces the work performed in the framework of NEREUS COST Action ES1403 and H2020-MSCA-ITN-2015/675530 ANSWER both coordinated by Nireas-IWRC. Join us and be part of this leading event for presenting and discussing the latest concepts and developments in the field of contaminant of emerging concern and urban wastewater reuse. We will try to answer various quite challenging questions including the following:

- A new perspective on wastewater contaminants is it about time to look for THE contaminant?
- The deeper we look ... the more numerous the risks are?
- WASTEWATER once _ wastewater forever?
- How can we create a Blue Circle Society?

FIRST ANNOUNCEMENT

Highlights!

- Talks from international authorities in the field
- Exchange of information between academia and stakeholders
- A platform for early-career investigators to present their work
- Satellite event by the Joint Programming Initiative (JPI) on Water Challenges
- Science Slam
- Wonderful venue, social activities and great food

www.xenowac2018.com 10-12 October 2018 GrandResort Hotel / Limassol, Cyprus

KENOWACII

Organised and Hosted by:

NEREUS COST Action ES1403

MSCA ITN 765530 ANSWER

ANSWER

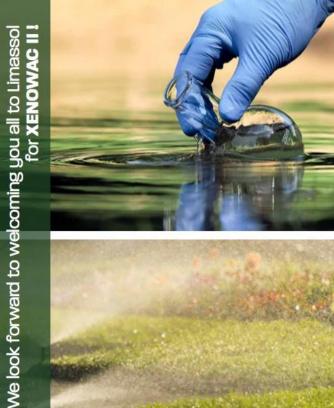
MAIN TRACKS

- "New" chemical contaminants of emerging concern in urban wastewater
- Microbiome and mobile antibiotic resistome in urban wastewater
- Spread, fate and transmission of contaminants and antimicrobial resistance under wastewater reuse scenarios
- Uptake and translocation of organic microcontaminants and antimicrobial resistance in crops
- Fate prediction through modelling approaches
- Effect-based bioassays required for wastewater reuse schemes
- Technologies efficient/economically viable to meet the wastewater reuse challenges
- Large demostration projects
- Data management and Prioritisation
- Risk assessment and Policy development
- XENOWAC II Science Slam

DE LOCATION DE LA COMPANSION DE LA COMPA

A decade after...

Organizing Committee


- Despo Fatta-Kassinos (Conference Chair), Nireas-IWRC, University of Cyprus (CY)
- Celia Manaia, Universidade Católica Portuguesa Escola Superior de Biotecnologia (PT)
- Thomas Berendonk, Technische Universität Dresden (DE)
- Eddie Cytryn, Agricultural Research Organization Volcani Center (IL)
- Christophe Merlin, CNRS-University of Lorraine (FR)
- Josep Bayona, Consejo Superior de Investigaciones Científicas (ES)
- Benny Chefetz, The Hebrew University of Jerusalem (IL)
- Jaroslav Slobodnik, Environmental Institute s.r.o. (SK)
- Norbert Kreuzinger, Technische Universität Wien (AT)
- Luigi Rizzo, University of Salerno (IT)
- Sixto Malato, Plataforma Solar de Almería, Centro de Investigaciones Energética, Medioambientales y Tecnológicas (ES)
- Lian Lundy, Middlesex University (UK)
- Mario Carere, Italian Institute of Health (IT)
- Luc Hornstra, KWR Watercycle Research Institute (NL)
- Sergio Silva, Adventech- Advanced Environmental Technologies Lda (PT)
- Dominique Darmendrail, JPI Water Coordinator Agence Nationale de la Recherche (FR)
- Valeria Dulio, Executive Secretary of the NORMAN Network

Organizers of the ANSWER Young Scientists and Blue Circle Society

- Irene Michael-Kordatou, Nireas-IWRC, University of Cyprus (CY)
- Lida Ioannou-Ttofa, Nireas-IWRC, University of Cyprus (CY)
- Toumazis Toumazi, Nireas-IWRC, University of Cyprus (CY)
- Marlen Ines-Vasquez, Cyprus University of Technology (CY)
- Heidemarie Schaar, Technische Universität Wien (AT)

www.xenowac2018.com 10-12 October 2018 GrandResort Hotel / Limassol, Cyprus XENOWAC

A decade after

Thank you for you attention

