2nd Summer School on Environmental Applications of Advanced Oxidation Processes Porto (Portugal), July 10-14, 2017

On photocatalytic membrane reactors in water and wastewater treatment: recent experiences and perspectives

Sylwia Mozia

West Pomeranian University of Technology, Szczecin Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland tel. +48 91 449 48 72, e-mail: sylwia.mozia@zut.edu.pl

Outline

- 1. A brief introduction to membrane processes
- 2. Photocatalytic membrane reactor (PMR) what is it?
- 3. Examples of possible applications of PMRs for treatment of real water and wastewater:

(I) Example 1: **Treatment of effluents from a municipal wastewater treatment plant** (MWWTP) in a PMR utilizing ultrafiltration (UF) – application of a **polymeric membrane**

(II) Example 2: Treatment of lake water in a PMR and a hybrid system coupling UVC/H₂O₂ and UF – application of a ceramic membrane

4. Conclusions and future trends

A brief introduction to membrane processes

Membrane – what is it?

membrane

structure, having lateral dimensions much greater than its thickness, through which transfer may occur under a variety of **driving forces**

(Terminology for membranes and membrane processes (IUPAC Recommendations 1996)

Membrane processes

- ✓ Membrane distillation (MD)
- ✓ Gas separation (GS)

✓...

✓ Liquid membranes (LM)

Pressure driven membrane processes

Streams in membrane separation processes

feed

a portion of feed stream which passes through the membrane; in case of water/wastewater treatment it contains mainly water and substances that were not rejected by the membrane a portion of feed stream which does not pass through the membrane; a concentrated solution containg components rejected by the membrane

The product of a membrane process can be either permeate or retentate, or sometimes both streams.

Membranes in water and wastewater treatment problems to solve:

MF/UF membranes are not efficient in separation of low molecular organic contaminants \rightarrow low permeate quality

water mono- low molecular and multivalent organic ions substances

PMR

What is a photocatalytic membrane reactor?

Photocatalytic Membrane Reactor (PMR)

A hybrid system in which the photocatalytic degradation and membrane separation occur simultaneously

PHOTOCATALYSIS:

- decomposition and mineralization of contaminants
- synthesis of useful organic compounds

MEMBRANE PROCESS:

- retention of photocatalyst in the reaction environment
- possibility of recovery and reuse of the photocatalyst in further runs
- control of a residence time of reagents in the reactor
- possibility of selective separation of products
- realization of a continuous process with simultaneous separation of reagents and photocatalyst from the solution

PMRs - classification

PMRs with photocatalytic membranes

separation of the molecules present in the solution (initial compounds and products or by-products of their decomposition)

PMRs with photocatalytic membranes

PHOTOCATALYTIC MEMBRANES

S. Mozia, Separation and Purification Technology, 73 (2010) 71–91

PMRs with photocatalyst in a slurry

FUNCTION OF THE MEMBRANE:

separation of the molecules present in the solution (initial compounds and products or by-products of their decomposition)

PMRs with photocatalyst in a slurry: configurations

A. Photocatalytic reaction conducted in a membrane module

B. Photocatalytic reaction conducted in the feed tank

S. Mozia, A.W. Morawski, R. Molinari, L. Palmisano, V. Loddo, Chapter 6 in "Handbook of membrane reactors, Volume 2: Reactor types and industrial applications", Ed. A. Basile, Woodhead Publishing Limited, 2013, pp. 236-295 Example 1: Treatment of effluents from a municipal wastewater treatment plant (MWWTP) in a PMR utilizing ultrafiltration (UF) – application of a polymeric membrane

Influence of photocatalyst on permeate flux

Influence of photocatalyst on permeate flux

Influence of photocatalyst on permeate flux

2. Selection of a photocatalyst

What is the infuence of photocatalysis on permeate flux during treatment of wastewater?

Treatment of wastewater in PMR utilizing UF Municipal sewage treatment plant with a capacity of 418 000 equivalent citizens

sampling point PE

Typical parameters of primary (PE) and secondary (SE) effluents applied in the experiments

Parameters	PE	SE
TOC [mg/dm ³]	70 - 80	12 - 19
DOC [mg/dm ³]	49 - 54	11 - 18
TIC [mg/dm ³]	58 - 100	42 – 58
рН	7.5 - 8.5	7.2 - 8.5
Conductivity [µS/cm]	1020 - 1170	1040 - 1130
TDS [ppm]	710 - 780	730 - 790
Turbidity [NTU]	75 - 110	1 - 4
N-NH ₄ + [mgN/dm ³]	43 - 50	5 - 8

Influence of photocatalysis on permeate flux

Increase of the permeate flux in the presence of TiO₂ P25

Will PMR be effective in treatment of wastewater?

Removal of organic contaminants

Mineralization of large molecular organic contaminants proceeds slowly. Overall treatment efficiency depends more on membrane separation than photocatalysis.

Concentration of TOC and DOC in primary effluents (initial feed) and in permeate after 5h of UF or PMR process Low molecular organic contaminants and products of their decomposition are not rejected by UF membranes. Overall treatment efficiency depends on effectiveness of photocatalysis.

Non Steroidal Anti-Inflammatory Drug Naproxen sodium salt (MW 252 g/mol) Feed: Naproxen in primary effluents

Possible application: post-treatment (polishing) of water/wastewater containing low concentrations of harmful or persistent organic contaminants (tens ug/dm³ or lower), e.g. pharmaceuticals or endocrine disrupting compounds.

Stability of polymeric membranes in PMRs

Stability of polymeric membranes in PMRs

PMR with a light source located in the vicinity of membrane surface

-CH-

·SC

a danger of destruction of the polymeric membrane structure by UV light or hydroxyl radicals

Resistance of membranes to UV:

polytetrafluoroethylene (PTFE) and poly(vinylidene fluoride) (PVDF)

polypropylene (PP), polyacrylonitrile (PAN) and cellulose acetate (CA)

polyethersulfone (PES) \approx polysulfone (PSU)

Stability of polymeric membranes in PMRs

PMR with a light source under or inside an additional reservoir (photoreactor)

NO RISK OF DESTRUCTION OF POLYMERIC MEMBRANES BY UV LIGHT

Stability of polymeric membranes in PMRs

Example 2: Treatment of lake water in a PMR and a hybrid system coupling UVC/H₂O₂ and UF – application of a ceramic membrane Treatment of surface water in PMR and UVC/H₂O₂–UF system

Miedwie Lake - source of drinking water for Szczecin, Poland

Water Treatment Plant ZPW "Miedwie": max. production: 100 000 m³ of water per day (at present: ca. 55 000 m³/day)

Water was collected after initial prefiltration through screens and sieves

Typical parameters of lake water applied in the experiments

Parameter	Unit	Value
TOC	mg/dm ³	8.1-8.7
Conductivity	μS/cm	555-573
Absorbance UV_{254}	cm⁻¹	0.1568-0.1707
Turbidity	NTU	0.54-1.66
рН	-	7.0-7.9
Cl-	mg/dm ³	41.2-42.2
NO ₃ -	mg/dm ³	0.8-1.7
SO42-	mg/dm ³	85.3-86.8
PO4 ³⁻	mg/dm ³	0-0.1
Na+	mg/dm ³	23.4-24.0
K+	mg/dm ³	4.9-5.4
Ca ²⁺	mg/dm ³	63.1-67.2
Mg ²⁺	mg/dm ³	16.5-17.1

Influence of AOPs on permeate flux

→ Both AOPs (TiO₂ photocatalysis and UVC/H₂O₂) have positive influence on UF membrane fouling mitigation during treatment of lake water

BUT

→ Increase of the permeate flux in the presence of TiO₂ P25 was slightly higher than in the presence of H₂O₂

Removal of organic contaminants

- → PMR: the highest TOC removal rate: $1 \text{ gTiO}_2/\text{dm}^3$. UVC/H₂O₂ – UF: similar efficiency at 0.15 gH₂O₂/dm³.
- → Increase of H_2O_2 concentration up to 0.3 g/dm³ → improvement of mineralization efficiency
- → Increase of TiO₂ concentration up to 1.5 g/dm³ → decrease of mineralization efficiency

Stability of ceramic membranes in PMRs

A short summary

Hybrid systems coupling AOPs with membrane separation, e.g. PMRs have a great potential in water/wastewater treatment and reuse.

Application of **AOPs** can result in **membrane fouling mitigation** and improvement of the **efficiency of organics removal**.

Application of **membrane separation** is especially advantageous when **retention of photocatalyst** in the reaction environment is necessary. Membrane allows to realize a **continuous process** with **simultaneous separation** of reagents (and photocatalyst) from the solution.

However, further investigations are still needed in order to **improve** the hybrid AOPs – membrane systems performance.

A **particular attention** should be paid to the selection of membranes for PMRs with reference to their resistance to:

- damage by oxidative species
- abrasion by photocatalyst particles

It is very important to **investigate the real systems**, which focus on treatment of **natural waters and real wastewaters**. The number of reports concerning this subject is still limited, since most of the experiments have been conducted using model solutions.

Acknowledgments

Dominika Darowna and Kacper Szymański

VATIONAL SCIENCE CENTRE

"Handbook of membrane reactors, Volume 2: Reactor types and industrial applications", Ed. Angelo Basile, Woodhead Publishing Limited, Cambridge, UK, 2013

1. S. Mozia, A.W. Morawski, R. Molinari, L. Palmisano, V. Loddo, Chapter 6:

"Photocatalytic membrane reactors: fundamentals, membrane materials and operational issues", pp. 236-295

2. R. Molinari, L. Palmisano, V. Loddo, S. Mozia, A.W. Morawski, Chapter 21:

"Photocatalytic membrane reactors: configurations, performance and applications in water treatment and chemical production", pp. 808-845

Thank you for your attention

