

Treatment of CECs by solar driven AOPs

Sixto Malato Plataforma Solar de Almería E: sixto.malato@psa.es

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

y Tecnológicas

- Solar photo-Fenton.
- Design of the photoreactor.
- Adequate experiments and evaluation of CECs?
- Adequate experiments for plants design and economical approach?
- Other concepts: Fe-complexes
- Combination with other technologies.
- Economic assessment.

Solar photocatalysis

Catalysis Today **147**, 1–59, 2009.

Solar photocatalysis

Source: www.scopus.com

Solar photo-Fenton

 10^{-1}

 $\underline{} = \left[Fe(H_2O)_6 \right]^{3+}$

 $-\Delta$ [Fe(H₂O)₃(OH)₃]

Slide 5

 \rightarrow [Fe(H₂O)₄(OH)₂]⁺

Ligand to Metal Charge Transfer....

Different light absorption

properties depending on L

- Fe³⁺ reduction through a
- hydroxyl ligands, some of which photoactive. $[Fe^{3+}L] + hv -> [Fe^{3+}L]^* -> Fe^{2+} + L'$

Ferric iron forms complexes with water and

-- [Fe(H₂O)₅(OH)]²⁺

 \rightarrow [Fe₂(H₂O)₈(OH)₂]⁴⁺

4.5

Solar photo-Fenton

• Ferric iron forms complexes with water and hydroxyl ligands, some of which photoactive.

$$[Fe^{3+}L] + hv --> [Fe^{3+}L]^* --> Fe^{2+} + L'$$

- Fe³⁺ reduction through a Ligand to Metal Charge Transfer....
- Different light absorption properties depending on L

Operational pH range and quantum efficiency of unmodified photo-Fenton (absence of organic ligands) limited to region around pH 3.

Solar photo-Fenton

Advantages

- Highly oxidative HO[•] can attack and degrade most organic structures.
- Very fast.
- Modest cost of reagents (iron, H₂O₂, and acids/bases for pH control).
- Fe³⁺ to Fe²⁺ photoreduction possible with solar radiation.

Disadvantages

- Requires strict pH control
- Use of pH controlling reagents (acids and bases) increases salinity of treated water.
- Some anions present in natural water (such as CO₃²⁻/HCO₃⁻,PO₄³⁻) scavenge HO[•], effectively stopping the process.
- Non selectivity of HO[•] means that biodegradable components are also targeted.

Design of the photoreactor 🧔 OPS PhD School

Design of the photoreactor 🏠 OPS PhD School

Appl. Catal. B: Environ., 170, 90-123, 2015.

Appl. Catal. B: Environ., 170, 90-123, 2015.

For micropollutant removal, <u>there is photosaturation</u>, so the process can be operated in photoreactors with wider optical lengths. **NOT possible with CPCs !!!**

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

Slide 14

J. Hazar. Mat., 279, 322-329, 2014.

Appl. Catal. B: Environ., 178, 210-217, 2015.

Extensive and non-concentrating solar photoreactors could be a good alter-native for working at high light path length, large volumes and **short treatment time** with low iron concentration. <u>Micropollutants!!</u>

Raceway Pond Reactors (RPR) liquid depth can be easily varied

Pay attention when using open photoreactors as wastewater should be completely confined in them and requiring treatment time should be in the range of minutes, for avoiding evaporation of water

Efficiency 0.9	3 mg/kJ	1.07 mg/kJ	1.08 mg/kJ	0.26 mg/kJ

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

Chemosphere, **130**, 73-81, 2015 *Catalysis Today*, **287**, 10–14, 2017

In Raceway Pond Reactors (RPR) liquid depth can be easily varied

Microalgal cultures in RPR and TPBR. Almería.

Low cost materials, mainly plastic liners. Construction cost ~ 10 €/m² (CPC ~ 100 €/m²)

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

AOPs PhD School

Adequate experiments for CECs?

SOLID PHASE EXTRACTION (SPE)

SOLID PHASE EXTRACTION (SPE)

SPE

SOLID PHASE EXTRACTION (SPE)

- Before the analysis, samples were prepared by a Solid Phase Extraction.
- Stop the reaction.
- Concentrate the sample.
- Separates interferences from the sample matrix.

HPLC/MS/MS Qtrap 5500

Optimised method: micro-contaminants in MWTP effluent. Acondicionamiento Cartuchos Oasis HLB 6cm³, 200mg I Cartuchos I

Degradation of 15 contaminants;

15 µg L⁻¹ each in MWTP effluent evaluated by SPE and UPLC/UV-DAD.

One could study the whole process.

Conclusions later applied to MWTP effluent evaluated by LC-MS.

CHARACTERIZATION (QTRAP LC-MS/MS system)

29/62 Compounds with higher contribution in MWTP Effluent

Wat. Res., 47, 833-840, 2013.

	average	min	max	detected
contaminant	ng 🗉 🛛	[ng L-1]	[ng L-1]	[-]
Caffeine*	18527.9	331	66379	10
4-AAA*	13732.0	1976	36727	10
Paraxanthine*	6816.9	12	16140	10
4-FAA*	6741.7	2236	9831	10
Nicotine*	6524.6	136	43103	8
Cotinine*	6039.4	16	18393	10
Ibuprofen	5295.0	181	12859	5
Gemfibrozil*	3652.2	1291	7161	6
Furosemide*	2206.8	181	7667	9
4-MAA*	2090.3	93	5684	10
Hydrochlorothiazide*	2045.5	314	3783	8
4-AA	1492.5	611	2542	8
Naproxen*	1385.8	142	5272	9
Diclofenac*	1326.9	110	3577	9
Ofloxacin*	1081.5	566	2299	10
Atenolol*	921.5	280	1361	10
Ranitidine*	916.6	100	2675	9
Codeine	889.4	43	1603	8
Sulfamethoxazole*	843.6	219	1879	10
Antipyrine*	829.1	49	3503	9
Isoproturon	715.0	54	1376	2
Ciprofloxacin*	705.4	192	1510	10
Acetaminophen	610.5	49	1172	2
Diuron*	539.5	103	2379	6
Ketoprofen*	451.6	254	735	10
Trimethoprim*	331.7	26	596	10
Venlafaxime	330.2	150	411	9
Azithromycin	262.7	75	405	6
Sulfapyridine*	241.0	50	734	10
Sum of ECs < 240 ng L ⁻¹	2589.0	846	5007	-

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

AOPs PhD School

13-4-FAA; 14-∑C; 15-4-AAA; 16-Caffeine; 17-Paraxanthine

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

Slide 25

Wat. Res., 47, 833-840, 2013.

J. Hazar. Mat., **323**, 442–451, 2017. *Chem. Eng. J.*, **318**, 161-170, 2017.

AOPs PhD School

AOPs PhD School. 2nd summ

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

Chem. Eng. J., **318**, 161-170, 2017.

AOPs PhD School. 2nd summer school. Porto July 10-14, 2017

AOPs PhD School

Advantages of organic - iron complexes

- Maintain Fe³⁺ soluble at wider pH range, enabling direct treatment at near-neutral pH values found in many natural waters
- Better absorbers in the UV-VIS region than ferric-aqua complexes
- Possible formation of additional oxidative species from Ligands via loss of electrons.

$$[Fe^{3+}L] + hv \rightarrow [Fe^{3+}L]^* \rightarrow Fe^{2+} + L^*$$

$$L^+ O_2 \rightarrow O_2^{-} + L'$$

 $HO_2^{\cdot} \leftrightarrow H^+ + O_2^{\cdot-}$

$$Fe^{3+} + O_2^{-} \rightarrow Fe^{2+} + O_2$$

 $Fe^{3+} + HO_2 \rightarrow Fe^{2+} + O_2 + H^+$

Complex photolysis

Formation of superoxide radical species

Superoxide/hydroperoxyl equilibrium

Promotion of Fe³⁺ reduction

Limitations of using Fe (III)-complexes for the treatment of contaminated water at near-neutral pH

- Treatment of high concentrations of contaminants or achieving mineralization is difficult as continuing treatment requires adding more and more complexing agent. This leads to a non-sustainable process with increasing TOC instead.
- Rapid photolysis of Fe(III)-complexes doesn't allow long treatment times necessary for mineralization.
- Logistics costs would be limited, as the reused WW could be used locally at municipal wastewater treatment plants or local industries within a short radius of the production plants.

Therefore...adequate for CECs.

Other concepts: Fe-complexes

J Phys Chem A **118**, 396-403, 2014.

Comparing Fe:EDDS at neutral pH with classical photo-Fenton at pH 3

Fe(III)-EDDS:

(+) Rapid degradation of contaminant.
(-) Constant TOC (total loss of activity following the break-up of the Fe(III)-EDDS complex).

Classical pF:

Slower degradation, but reliable (Fe dissolved) for longer time. (+) TOC eventually starts to decrease.

J. Photochem. Photobiol. A: Chem. 303, 1-7, 2015.

	CF=1 ^{(ng}	o L ⁻¹)	CF=4 (ng L-1))	
Caffeine	19980	20480	54550	53746	
Carbamazepine	7460	5670	28615	15395	
Naproxen	4740	4359	11350	8365	
4-AAA	4234	4324	21585	16750	
4-FAA	2126	2380	6035	12175	
Norfloxacin	3118	1418	16590	5315	
Antipyrin	1277	1228	4174	5802	
Sulfamethoxazole	905	835	3325	3674	
Ofloxacin	1107	603	4279	2348	LC-Qtrap-
Ciprofloxacin	327	562	1487	1452	
Atenolol	594	525	2411	2162	5500-MS/MS
Erithromycin	363	391	1214	1423	
Azithromycin	144	391	648	1276	
Fenofibric acid	223	309	789	741	
Sulfapirydine	270	238	836	792	
Ranitidine	294	218	1080	959	
Trimetroprim	211	211	720	350	Alternary and Alternative
Sum of micro-contaminants < 200 ng L ⁻¹	1164	839	3500	3208	
Total	48537	44981	163188	135933	

A-XO

Combination NF/AOPs

•	CF	1	4
Solar photo-Fenton at pH = 3	H ₂ O ₂ consumed (gm ⁻³) Q _{uv} (kJ L ⁻¹) t(min) / CPC surface	17.0 22.5 90/100	4.4 5.1 120/22.6
Solar photo-Fenton like Fe (III)-EDDS complex	H ₂ O ₂ consumed (gm ⁻³) Q _{uv} (kJ L ⁻¹) t(min) / CPC surface	24.9 2.7 14/15	6.2 0.6 10/3.3

Operational requirements for attaining <u>95% of pharmaceuticals degradation</u> present in NF concentrates (CF=4) when solar photo-Fenton (pH = 3) and photo-Fenton like Fe(III)-EDDS complex were applied. CF=1, no NF, only AOP.

Catalysis Today 252, 61-69, 2015.

Solar photo-Fenton treatment of 1000 m³/day MWTP effluent. Elimination of CEC >90%

	Classic photo-Fenton, pH 3		Fe-EDDS, circu	umneutral pH			
	D	С	D	С			
S _{CPC} (m ²)	4,300	2,300	3,600	1,200			
	Amorti	zation Costs, €/y	vear				
AC _{CPC}	102,000	70,100	90,900	47,000			
AC _{mbm}		40,600		40,600			
Operation costs, €/year							
Reagents	34,300	13,200	292,700	145,900			
Electricity	30,100	25,200	20,100	22,700			
Maintenance and personnel	28,200	27,600	23,500	20,300			
Total OC	92,600	66,000	336,300	188,900			
		Total costs					
TC, €/year	194,600	176,700	427,200	276,500			
TC, €/m³	0.53	0.48	1.17 0.76				

Chem. Eng. J., **318**, 161-170, 2017. *Chem. Eng. J.*, **310**, 514-524, 2017.

O₃ consumption (mg/L)

5

Economic assessment

	Solar pho	to-Fenton	Ozon	ation
	D	С	D	С
Time, min			6.7	7.4
Fe(III), mM	0.1	0.2		
H ₂ O ₂ , mg/L	55.8	105.4		
Q _{UV} , kJ/L	2.9	3.8		
O ₃ , mg/L			6.1	10.1
H ₂ SO ₄ , mg/L	110	65		
EDDS, mL/L	0.2	0.1		

Fe(III):EDDS

Economic assessment

Treatment of 1000 m³/day MWTP effluent. Elimination of CEC **>90%**

	Solar photo-Fenton				Ozonation			
	D		C		D		С	
	€	€/m³	€	€/m³	€	€/m³	€	€/m³
AC	90900	0.25	47000	0.13	59400	0.16	25500	0.07
AC _{mbm}			40600	0.11			40600	0.11
OC	336200	0.92	188800	0.52	231900	0.64	88000	0.24
тс	427100	1.17	276400	0.76	291300	0.80	154100	0.42
TC (€/m ³), excluding NF membrane system				0. 65				0.31

Solar photo-Fenton					Ozonation	l
	€/m ³	€/m ³	€/m³	€/m ³	€/m³	€/m³
Flow (m³/day)	D	С	excluding NF membrane system	D	С	excluding NF membrane system
500	1.31	0.86	0.71	0.85	0.49	0.34
1,000	1.17	0.76	0.65	0.80	0.42	0.31
2,000	1.08	0.68	0.60	0.76	0.37	0.29
3,000	1.04	0.64	0.57	0.74	0.35	0.27
5,000	1.00	0.61	0.55	0.72	0.32	0.26
10,000	0.96	0.57	0.53	0.70	0.29	0.25

Environ. Sci.: Water Res. Technol. **2**, 511–520, 2016.

Welcome to SPEA10 in Almería (SPAIN) June 4th-8th - 2018

Palacio de Exposiciones y Congresos Cabo de Gata Ciudad de Almería.

Welcome

On behalf of the Organizing and Scientific Committees, it is our great pleasure to welcome you to the 10th European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA), held in Almeria, Spain, on June 4th – 8th 2018.

Launched in 2000 and 2002 in Saint-Avold, France, the European meeting series SPEA progressively gained over the last years its renown among the most relevant meetings in solar chemistry and photocatalysis by travelling around Europe. Hosted in Barcelona (2004), Gran Canaria (2006), Palermo (2008), Prague (2010), Oporto (2012), Thessaloniki (2014), Strasbourg in (2016) SPEA will take place in Almería in 2018.

Updates

November 30, 2017. Online registration and abstract submission open.

() 23 June, 2017

January 31, 2018. Abstract submission deadline

() 23 June, 2017

March 15, 2018. Notification of abstract acceptance

() 23 June, 2017

Sponsors

3rd Iberoamerican Conference on Advanced Oxidation Technologies (III Cipoa) 2nd Colombian Conference On Advanced Oxidation Processes (II Ccpaox)

November 14 – 17, 2017 Medellín (Guatapé), Colombia

REGISTRATION RATES

https://cipoa2017.com/

Category	Before or on Se	eptember 12th	After September 12th		
	СОР	USD	СОР	USD	
Undergraduate students	\$ 210.000	\$ 81	\$ 300.000	\$ 115	
Postgraduate students	\$ 560.000	\$ 215	\$ 800.000	\$ 308	
Professors	\$ 805.000	\$ 310	\$ 1.150.000	\$ 442	
Other professionals	\$ 875.000	\$ 337	\$ 1.250.000	\$ 481	

Discount rates:

Members of AOPs School (Students) – 15% Members of AOPs School (Professors) – 10% **E-mail** cipoa2017@udea.edu.co **Phone** +57 (4) 2198926

Thank you very much for your attention Questions?

Sixto Malato Rodríguez Sixto.malato@psa.es

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

y Tecnológicas

