

Montserrat Pérez Moya (montserrat.perez-moya @upc.edu) Departament d'Enginyeria Química (DEQ) Universitat Politècnica de Catalunya (UPC) EEBE, Barcelona, Spain

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

OVERVIEW

- INTRODUCTION
 - ✓ Water
 - Conventional water treatments
 - Wastewater quality parameters
 - AOPs
- AOPs
 - Classification
 - Process description Recent Studies
- WHAT IS REQUIRED TO AOPs IMPLEMENTATION?
- STRATEGIES TO IMPROVE AOPs
 - Dosage of reagents
 - On-line monitoring
- CONCLUSIONS

WHAT'S THE PROBLEM WITH WATER?

- LIMITED (97,5% salty water, 2,5 % fresh water)
- NECESSARY FOR HUMAN (human dies after <u>5-10 days without water</u>)
 ✓ LIVING
 ✓ DEVELOPMENT

Water treatment and recycling is required

- RESTRICTIVE LEGISLATION ABOUT WATER CONTAMINATION
- MAJOR SOCIAL AWARENESS

- Public health
- Environmental care
- Do in a reduced space what is doing the environment is a large space
- Evolution in the aim of the water treatments:

Contaminants of emerging concern (CEC)

Before 90s - Hazardous, non-polar and persistent compounds

Drastic reduction of discharges

"New" contaminants (Contaminants of emerging concern)

- Non-regulated
- Low concentration (ng L⁻¹ to μg L⁻¹)
- Continuous introduction into the environment
- Endocrine disrupting compunds (EDC)
- Pharmaceuticals and personal care products (PPCP)
- Pesticides
- Dyes

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

CEC - Pharmaceuticals

Therapeutic classes	Pharmaceutical	Source	
Analgesic	Naproxen, paracetamol, salicylic acid	 Mainly human excretion (partial 	
Anti-inflammatory	Diclofenac, ibuprofen	absorption)	
Antihypertensive	Atenolol, celiprolol, metoprolol, propranolol, sotalol	 Inefficiency of sewage treatment plants (STP) for pharmacoutical 	
Lipid regulator	Bezafibrate, clofibric acid, fenofibric acid, gemfibrozil	residues elimination	
Antiepileptic	Carbamazepine, diazepam, primidone	Livestock	
Antibiotics	Amoxicillin, ofloxacin, sulfamethoxazole, sulfathiazole, erythromycin	Veterinary medicineEffluent from drug manufacture	
Contraceptive	17β-Estradiol, estrone, 17μ- ethinylestradiol, diethylstilbestro		

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

Removal rates of pharmaceuticals in sewage streams

	Verlicchi et al, 2012	Petrie et al, 2014	Gurke et al., 2015	
Amitriptiline	-	M-H	L (15%)	Removal rates
Atenolol	L-M	M-H	L (23%)	L: < 50%
Bezafibrate	L-M	L-M	L (49%)	M: 50-80%
Carbamazepine	L	I.	L (-7%)	H: > 80%
Gabapentin	Н	L-H	L (6%)	
Metoprolol	L	L-M	L (-9%)	
Propranolol	L-M	-	L (-4%)	
Sulfamethoxazole	L-H	L-M	L (43%)	
Trimethoprim	L-H	L-M	L (-11%)	
Valsartan	-	L	L (24%)	

Sewage treatment plants have not been designed to remove pharmaceutical residues from wastewaters

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

Effects of CEC

- Few data available about the toxicity of these emerging contaminants and effects to humans and aquatic organisms
 - feminization of male fish (endocrine disruptors)
 - bacterial resistance (antibiotics)

- Chronic effects?
- Synergistic effects?

Lack of Information

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

WASTEWATER QUALITY PARAMETERS

- Suspension solids
- Evaporation solids
- Calcination solids
- Turbidity
- Hardness
- Color
- CO₂ free
- •Cl⁻, SiO₂, SO₄²⁻
- On-line parameters:
 - Temperature
 - Alkalinity, pH
 - •O₂ dissolve
 - Conductivity, [soluble salts]
 - Redox Potential

Organic Matter:

- TOC (Total Organic Carbon)
- COD (Chemical Oxygen Demand)
- BOD (Biological Oxygen Demand)
- Toxicity
- AOX (Absorbable Organics Halogens)
 Specific contaminant monitoring (HPLC, GC_MS,...)

Which parameters are usually check in legislation?

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

WASTEWATER QUALITY PARAMETERS

Suspension solids

- Evaporation solids
- Calcination solids
- Turbidity
- Hardness
- Color
- CO₂ free
- •Cl⁻, SiO₂, SO₄²⁻
- On-line parameters:
 - Temperature
 - Alkalinity, pH
 - •O₂ dissolve
 - Conductivity, [soluble salts]
 - Redox Potential

-Organic Matter:

- TOC (Total Organic Carbon)
- COD (Chemical Oxygen Demand)
- BOD (Biological Oxygen Demand)
- Toxicity
- -AOX (Absorbable Organics Halogens)

Specific contaminant monitoring (HPLC, GC_MS,...)

WHAT'S WRONG WITH CONVENTIONAL WATER TREATMENT?

- THERE ARE INSUFFICIENT IN MANY CASES
- CONTAMINANT IS NOT ALWAYS
 - ✓ REMOVED
 - ✓ DEGRADATED (turn into biodegradable matter)

✓ MINERALIZED

Advanced Oxidation Processes (AOPs) presents and interesting alternative or complement

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

OVERVIEW

- INTRODUCTION
 - ✓ Water
 - Conventional water treatments
 - ✓ Wastewater quality parameters
 - ✓ AOPs
- AOPs
 - Classification
 - Process description Recent Studies
- WHAT IS REQUIRED TO AOPs IMPLEMENTATION?
- STRATEGIES TO IMPROVE AOPs
 - Dosage of reagents
 - On-line monitoring
- CONCLUSIONS

WHAT'S AN ADVANCED OXIDATION PROCESS?

Technologies based on the generation of an active and non selective oxidants HO• radical ("activated oxygen species") Oxidative degradation of pollutants (organic and inorganic) in aqueous or air media.

•OH generation achieved by a combination of oxidizing agents (ozone, hydrogen peroxide), ultraviolet (UV), visible or ultrasound radiation and catalysts (metallic ions or semicondutors).

Main advantages:

- The contaminant is chemically transformed not only transported from a phase to another
- It is possible to reach complete mineralization
- It is possible to transform refractory contaminants into biologically treatable substances

Main disadvantages:

- Cost
- Modeling/ Prediction/ Automation

RADICALS REACTS IN A WELL-KNOWN WAYS WITH ORGANIC COMPOUNDS

✓ Abstracting H from C-H, N-H or O-H bonds

 $HO \bullet + R - H \rightarrow H_2O + R \bullet$

 \checkmark Adding to C = C bonds

HO• + RR'C= CR"R" \rightarrow RR'C(OH)- C• R"R"

✓Adding to aromatic rings

OXIDATION / MINERALIZATION

OXIDATION

HO• + Contaminant → Oxidized Intermediate

In the presence of molecular oxygen

 $R \bullet + O_2 \rightarrow RO_2 \bullet$ (diffusion controlled reaction)

 $RO_2^{\bullet} \rightarrow Oxidized$ Intermediate

MINERALIZATION

HO• + Oxidized Intermediate \rightarrow H₂O + CO₂

OPs PhD School

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

Process	λ (nm)	Solar light
Photolysis	< 290	NO
Photo catalysis TiO ₂ + hv	< 380	YES
$\begin{array}{l} H_2O_2\\ H_2O_2 + h\nu \end{array}$	 < 290	NO
H_2O_2 + catalyst H_2O_2 + catalyst + hv	 < 400	YES
O_3 O_3 + hv	 < 290	NO
$H_2O_2 + O_3$ $H_2O_2 + O_3 + hv$	 < 290	NO
Fenton (Fe ⁺² +H ₂ O ₂) Photo -Fenton (Fe ⁺² +H ₂ O ₂ + hv)	UV + Visible (<550 nm)	YES

www.upc.edu

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

Infrared > 700 nm Visible – Iow energy photons (400 - 700 nm) UV (40 – 400 nm / 30 – 3 eV): UVA (320 - 400 nm), UVB (290 – 320 nm), UVC (220 – 290 nm), Far UV (190 – 220 nm), VUV (40 – 190 nm)

Photolysis, $h\nu \leq 290$ nm

 $H_2O + h\nu \rightarrow H^{\bullet} + HO^{\bullet}$ (VUV – Xe-excimer, $\lambda_{max} = 172 \text{ nm}$)

 $H^{\bullet} + O_2 \rightarrow HO_2^{\bullet}$

 $HO \bullet + RH \rightarrow H_2O + R \bullet$

 $R^{\bullet} + O_2 \rightarrow RO_2^{\bullet}$

Limited penetration of V-UV radiation

$H_2O_2 + hv \le 290 \text{ nm}$

 H_2O_2 + hv \rightarrow 2 HO•

$$H_2O_2 + HO \bullet \rightarrow HO_2 \bullet + H_2O$$

Contaminant + $h_{\nu} \rightarrow$ Intermediate

Contaminant + *HO*• → Intermediate

Lopez, J.; García Einschlag, F.; Gonzalez, M.; Capparelli, A. L.; Oliveros, E.; Hashem, T.; Braun, A. M.

J. Photochem. Photobiol., A: Chem. 2000, 137,177-184

$H_2O_2 + hv \le 290 \text{ nm}$

Contaminant + $h_{V} \rightarrow$ Intermediate

Contaminant + $HO \bullet \rightarrow Intermediate$

*Suprasil envelope

Lopez, J.; García Einschlag, F.; Gonzalez, M.; Capparelli, A. L.; Oliveros, E.; Hashem, T.; Braun, A. M.

J. Photochem. Photobiol., A: Chem. 2000, 137,177-184

Photolysis / H_2O_2 + h\nu \le 290 \text{ nm} Recent Studies

New lamp technology - enhancement of H_2O_2 excitation (UVC) (λ = 185, 222 nm,...)

> partial / total substitution of H_2O_2 by the use of VUV radiation

Improvements in reactor design

PHOTOCATALYSIS PROCESS

It is a heterogenic process which combine:

CATALYSIS

Semiconductor

TiO_2 + $hv \le 380$ nm

It is necessary to avoid **h+** and **e-** recombination in the catalyst (inside /superficially)

PHOTOCATALYSIS PROCESS

Recent Studies

Improvement by the use of doped TiO₂ or TiO₂ / sensitizer / co-catalyst combinations

> Doped TiO_2 or TiO_2 / sensitizer / co-catalystcombinations suitable for Vis- (solar) radiation

> Large, mechanically stable TiO_2 particles or mechanically stable TiO_2 on particulate inert support for simple photocatalyst recycling

Ozone, O₃

Ozone is a well-known oxidant agent (Reduction potential 2.08 V) Poor solubility in water

Unfortunately, to generate ozone is required:

- High energetic demand
- Significant reagent consume

Ozone, **O**₃ Recent Studies

Partial / total substitution of O₃ by the use of VUV radiation

Improvements in reactor design

36

FENTON AND FENTON-LIKE REACTIONS

Fenton Reagents

Hydrogen peroxide

- ✓ relative cheap and easy to handle oxidant (environmentally benign)
- ✓ infinite solubility in water

Iron

✓ abundant in the earth + non toxic, (iron(II), iron(III))

Applications

Large variety of organic compounds has been oxidized by this process: Acids, alcohols, aldehydes, ketones, ethers, amines, aromatics, dyes,...

FENTON AND FENTON-LIKE REACTIONS

Accepted mechanism

Fenton (Fe⁺² + H₂O₂) Fe(II) + H₂O₂ \Rightarrow Fe(III) + HO⁻+ HO⁻ $k = 40 - 80 M^{-1}s^{-1}$ (very fast)

Fenton-like reaction - Fe⁺² regeneration

$$Fe(III) + H_2O_2 \iff [Fe(III)-OOH]^{+2} + H^+$$

 $[Fe(III)-OOH]^{+2} \rightarrow Fe(II) + HO_2^{-1} + H^+ k = 0.01 - 0.02 M^{-1}s^{-1}$ (very slow)

Much lower rate ⇒ Fe(III) accumulates in reaction medium

•OH + organic contaminants $\rightarrow \rightarrow \rightarrow$ oxidation products

FENTON REACTIONS - Limitations

➢ pH = 2.8 − 4

Only partial mineralization when

Formation of ferrioxalate and other stable Fe³⁺ complexes (prevent recycling of Fe³⁺ to Fe²⁺)

To improve the overall degradation process

- Relatively high concentrations of Fe(II) ⇒ stoichiometric amounts
 - Generation of high amount of iron sludge due to separation before discharge
 - Limits for iron discharge in effluents in Europe: 10 mg L⁻¹ (0.18 mmol L⁻¹)
- Concentrations of $H_2O_2 \Rightarrow$ above stoichiometric amounts

Too high concentrations must be avoided: $OH + H_2O_2 \rightarrow H_2O + HO_2$.

• Iron reducing species

LIGHT SOURCE

Increases the oxidant production rate

- Reaction given by low-energy photons
- Photo-Fenton reactions (photon absorption close to 400 nm)

Fe $^{+3}$ + H₂O + $\lambda \rightarrow$ Fe $^{+2}$ + HO + H⁺

Fenton like reactions (photon absorption up to 550 nm)
 ✓ Formation of high valence Fe-based oxidants

✓ Direct attack on organic matter

Limitations ⇒ • pH restrictions as in dark Fenton • need of transparent solution ••• ••• UPC

COMPETITIVE REACTIONS

Fenton reagent excess decreases the oxidation rate

 Experimental conditions should be established to avoid the competitive reactions for HO• radical:

HO• + Fe⁺² \rightarrow Fe⁺³ + HO⁻ HO• + H₂O₂ \rightarrow HO•₂ + H₂O HO• + HO• \rightarrow H₂O₂

FENTON AND PHOTO-FENTON REACTIONS Recent Studies

- Replacement of Fe(II) or Fe(III) salts by
 - Immobilize Fe (Heterogeneous Fenton Process)
 - Non dependable pH Fe
- Catalyst or process design to enable Fe(III) recycling
- Development of
 - large scale solar applications
 - combinations of solar and artificial light reactors

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

OVERVIEW

- INTRODUCTION
 - ✓ Water
 - Conventional water treatments
 - Wastewater quality parameters
 - ✓ AOPs
- AOPs
 - Classification
 - ✓ Process description Recent Studies
- WHAT IS REQUIRED TO AOPs IMPLEMENTATION?
- STRATEGIES TO IMPROVE AOPs
 - Dosage of reagents
 - On-line monitoring
- CONCLUSIONS

WHAT IS REQUIRED TO INDUSTRIALLY APPLY AOPs?

DECREASE:

- » Energy demand
- » Reagent demand
- » pre or post treatment needs

To minimize cost treatment

STRATEGIES TO REDUCE ENERGY DEMAND

- » Use of Solar radiation
- » Develop catalyst to modify the radiation necessary to activate them
- » Effective reactors' design to use all the available radiation
 - » Modeling / Simulation
 - » Appropriate materials selection

STRATEGIES TO REDUCE REAGENT DEMAND

- » Select appropriate reagent ratios
 - » Contaminant:Reagent ratio, Reagents ratios
- » Dosage of reagents*
- » Work in the better reaction conditions
- » On-line monitoring*

STRATEGIES TO AVOID PRE- / POST- TREATMENTS

» Wastewater segregation/ management

- to use natural conditions
- avoid specific pretreatments
- Reduce treatment cost
- Select the better treatment for every wastewater

STRATEGIES TO AVOID PRE- / POST- TREATMENTS

- » Modified catalyst
 - Fenton pH necessary to better usage
 - Photocatalysis light radiation in visible
- » Immobilize catalyst helps to
 - avoid post- elimination
 - Reutilization Reduce catalyst demand
 - Apply treatment in natural ecosystems (sea, lake, river,...)

STRATEGIES TO REDUCE REAGENT DEMAND

- » Select appropriate reagent ratios
 - » Contaminant : ratio, Reagents : ratios
- » Dosage of reagents* Exemple: Photo-Fenton
- » Work in the better reaction conditions
- » On-line monitoring*

DOSAGE PROTOCOLS FOR HYDROGEN PEROXIDE State of the Art

- Dosage has been recently described as a relevant factor
- Batches addition of load portions along the reaction time
- Continuous dosage
- Continuous automatic dosage

Fixed total load = Initial load + Continuous flow time-span

UPC

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

EXPERIMENTAL METHODS

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

RESULTS DOE (2²)

	t _{ini}	P ₀	t _{ini}	P ₀	ξmax	St.Dev
R	-1	8	0	100%	0,7743	0,0290
Α	-1	-1	0	10%	0,9113	0,1254
В	1	-1	30	10%	0,8529	0,2081
С	-1	1	0	30%	0,9410	0,0392
D	1	1	30	30%	0,9033	0,1368
Е	0	0	15	20%	1,0000	0,0000
F	0	0	15	20%	0,9355	0,0912
G	0	0	15	20%	1,0000	0,0000
Н	-1	0	0	20%	0,8474	0,1206
I	1.414	0	36.21	20%	0,7995	0,0421
J	0	-1.414	15	5.86%	0,9108	0,1123
Κ	0	1.414	15	34.14%	0,9457	0,2151

Variables	min	max	centre
t _{ini} (min)	0	30	15
P ₀ (%)	10	30	20

"R" : Reference experiment
(no dosage protocol)

$$\xi^{max} = \left(1 - \frac{\left[TOC\right]^{\circ}}{\left[TOC\right]_{0}}\right)$$

STRATEGIES TO REDUCE REAGENT DEMAND

- » Select appropriate reagent ratios
 - » Contaminant : ratio, Reagents : ratios
- » Dosage of reagents*
- » Work in the better reaction conditions
- » On-line monitoring* Exemple: Photo-Fenton

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

On-line Monitoring & Dosage

- H_2O_2 is usually measured by off-line methods.
- On-line H_2O_2 monitoring appears to be required for optimal dosage.
- Scarce investigation on the relationship between H₂O₂ evolution during the photo-Fenton process and on-line operational parameters.
- Additionally:

vww.upc.edu

- ORP, has been one of the first on-line parameters suggested.
- Recently DO has been related with the H₂O₂ evolution during the photo-Fenton process.

Oxidation Reduction Potential (E, mV)

Measure the affinity of a substance for electrons, referred to hydrogen (E=0).

Any substance — atom, ion, or molecule — that

- is more capable of oxidizing than hydrogen is assigned a positive (+) redox potential;
- those less capable than hydrogen has negative (-) redox potential.

When electrons flow "downhill" in a redox reaction, they release free energy. We indicate this with the symbol ΔG (delta G) preceded by a minus sign.

It requires an input of free energy to force electrons to move "uphill" in a redox reaction. We show this with ΔG preceded by a plus sign.

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

ON-LINE MONITORING & DOSAGE - ORP

OPs PhD School

www.upc.edu

Var.	С	I	R
t _{ini} (min)	0	36.2	0
P ₀ (%)	30	20	100

O₂ dissolve, DO (mg·L⁻¹, %)

Sensitive electrode determination

Cathode Anode $\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$ Pb + 2OH⁻ \rightarrow PbO + H₂O + 2e⁻

Electrode must be calibrated each time it is used: 100% O_2 saturation, fully aerated water

0% O₂ (dissolved sodium sulfite is added into water)

The results can be expressed relative percentage to the amount of dissolved oxygen saturated water (at 25 $^{\circ}$ C, 8.24 mg L⁻¹O₂).

DO value depends on temperature, pressure and water salinity.

Var.	С	I	R
t _{ini} (min)	0	36.2	0
P ₀ (%)	30	20	100

On-line Monitoring & Dosage

- Investigation on the relationship between H₂O₂ evolution and online operational parameters, ORP and DO is required.
- Preliminary results suggest a dependence. Further work is required to model this dependence.

www.upc.edu

GENERAL DISCUSSION ABOUT ADVANCED OXIDATION PROCESSES

2nd Summer School on Environmental applications of AOPs, University of Porto, Faculdade de Engenharia, Porto (Portugal), July 10-14, 2017

OVERVIEW

- INTRODUCTION
 - ✓ Water
 - Conventional water treatments
 - ✓ Wastewater quality parameters
 - ✓ AOPs
- AOPs
 - Classification
 - ✓ Process description Recent Studies
- WHAT IS REQUIRED TO AOPs IMPLEMENTATION?
- STRATEGIES TO IMPROVE AOPs
 - ✓ Dosage of reagents
 - ✓ On-line monitoring
- CONCLUSIONS

CONCLUSIONS

- Advanced Oxidation Processes (AOPs) are and interesting alternative or complement to conventional wastewater treatment.
- Select the adequate AOPs and its right operation condition leads to a more effective and inexpensive treatment.
- It should be clear the goal of the treatment.
- ✓ More research is required in order to improve the existing AOPs
- Interdisciplinary studies helps faster AOP improvement in order to be applied.
- pre- and post- AOPs treatment improve the efficient and reduce the cost of the overall process.

OBRIGADA PELA SUA ATENÇÃO

71

QUESTIONS

