

Sección Departamental de Ingeniería Química

Catalytic Wet Peroxide Oxidation (CWPO): Potential applications and challenges

Juan J. Rodriguez juanjo.rodriguez@uam.es

THE FENTON PROCESS

SOME WORKS IN CATALYTIC WET PEROXIDE OXIDATION

AC-based catalysts

CWPO

- J.A. Zazo, J.A. Casas, A.F. Mohedano, <u>J.J. Rodriguez</u>. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B., 65 (2006) 261-268.
- C.M. Domínguez, P. Ocón, A. Quintanilla, J.A. Casas, <u>J.J. Rodriguez</u>. *Highly efficient application of activated carbon as catalyst for wet peroxide oxidation*. Appl. Catal. B., 65 (2006) 261-268.
- R.S. Ribeiro, A.M.T. Silva, <u>J.L. Figueiredo</u>, J.L. Faria, <u>H.T. Gomes</u>. *Removal of 2-nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties*. Appl. Catal. B., 140-141 (2013) 356-362.
- R.S. Ribeiro, Z. Frontistis, <u>D. Mantzavinos</u>, D. Venieri, M. Antonopoulou, I. Konstantinou, A.M.T. Silva, J.L. Faria, <u>H.T. Gomes</u>. *Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices*. Appl. Catal. B., 199 (2016) 170-186.

Other materials

- C.B. Molina, A.H. Pizarro, V.M. Monsalvo, A.M. Polo, A.F. Mohedano, <u>J.J. Rodriguez</u>. *Integrated CWPO and biological treatment for the removal of 4-chlorophenol from water*. Sep. Sci. Technol., 45 (2010) 1595-1602.
- M. Munoz, Z.M. de Pedro, N. Menendez, J.A. Casas, <u>J.J. Rodriguez</u>. *A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols*. Appl. Catal. B., 136-137 (2013) 218-224.

CATALYTIC WET PEROXIDE OXIDATION

- Pillared clays (35%)
- Zeolites (18%)
- Silica (18%)

- Carbon materials (13%)
- Alumina (9%)
- Iron oxides (7%)
- Other (13%)

CWPO

HIGHTLIGHT RESULTS IN CWPO OF PHENOL

CATALYST	Fe (%, wt.)	W _{CAT} (g/L)	Phenol (mM)	H ₂ O ₂ /Phenol (stoich)	T (ºC)	pH ₀	Time (min)	X _{Ph} (%)	X _{TOC} (%)	Fe _{Leach} (mg/L)	Ref. Author
Fe ₂ O ₃ /CeO ₂	5	1	53	1.32	70		240	78	57	<0.25	Massa et. al., 2008
Fe-ZSM-5	2	0.35	69	1.5	70	3.5	180	81	17	1	Fajerwerg et. al., 1996
Fe-Al-PILC	3.01	5	0.5	1.1	25	3.7	240	100	65	0.2	Guelou et. al., 2003
Fe-Al-PILC	7.2	0.5	1.06	1	25	3.5	240	100	60	2.0	Molina et al. 2006
Fe/Al ₂ O ₃	7.67	1	1	1.1			120	100	60	6.5	Al Hayek et. al., 1984
Fe/SiO ₂	1.5	0.35	69	1.5	70	3.5	180	65	19	5	Fajerwerg et. al., 1996
Fe-Resin	27.5	5	10.6	0.67	80	3	120	100	76		Liou et. al., 2005
Fe/AC	4	0.5	1.06	1	50	3	120	100	78	1.1	Zazo et. al., 2006

Fe/AC CATALYST

	AC	Fe/AC
S _{BET} (m ² /g)	974	781
Pore volume (cm ³ /g)	0.75	0.67
Micropore	0.34	0.27
Mesopore	0.19	0.16
Macropore	0.22	0.24
Fe content (% w/w)	-	4

How is it expected to work?

CWPO

 H_2O_2

 H_2O_2

CATALYTIC WET PEROXIDE OXIDATION

CWPO

Carbon materials as catalysts: activity prediction by redox properties

Relationship between the current exchange (i₀) and the H₂O₂ decomposition (kd) for the carbon materials tested

FENTON OXIDATION OF PHENOL: REACTIO PATHWAY

J.A. Zazo, J.A. Casas, A.F. Mohedano, M.A. Gilarranz, J.J. Rodriguez. Environ. Sci. Technol. 39 (2005) 9295-9302

CWPO OF PHENOL: ECOTOXICITY OF OXIDATION BYPRODUCTS

Cor	npound	EC ₅₀ (mg/L)	TU (100 mg/L)	
	Phenol	16	6.3	
	Catechol	8	12.5	
Aromatics	Resorcine	215	0.5	
	Hydroquinone	0.041	2400	
	p-Benzoquinone	0.1	1000	
	Muconic	250	0.4	
	Maleic	250	0.4	
	Fumaric	250	0.4	
Organic	Malonic	450	0.2	
Acius	Acetic	130	0.8	
	Formic	162	0.6	
	Oxalic	>450	<0.2	

CWPO

Fe/AC CATALYST

Batch experiments

Operating cond: T: 50°C ; pH_0 : 3; 100 mg/L phenol, 500 mg/L H_2O_2 , 500 mg/L Fe/AC

J. A. Zazo, J. A. Casas, A.F. Mohedano, J. J. Rodriguez. Appl. Catal. B Environ. 65 (2006) 261-268

CWPO

HIGHTLIGHT RESULTS IN CWPO OF PHENOL

CATALYST	Fe (%, wt.)	W _{CAT} (g/L)	Phenol (mM)	H ₂ O ₂ /Phenol (stoich)	T (ºC)	pH ₀	Time (min)	X _{Ph} (%)	X _{TOC} (%)	Fe _{Leach} (mg/L)	Ref. Author
Fe ₂ O ₃ /CeO ₂	5	1	53	1.32	70		240	78	57	<0.25	Massa et. al., 2008
Fe-ZSM-5	2	0.35	69	1.5	70	3.5	180	81	17	1	Fajerwerg et. al., 1996
Fe-Al-PILC	3.01	5	0.5	1.1	25	3.7	240	100	65	0.2	Guelou et. al., 2003
Fe-Al-PILC	7.2	0.5	1.06	1	25	3.5	240	100	60	2.0	Molina et al. 2006
Fe/Al ₂ O ₃	7.67	1	1	1.1			120	100	60	6.5	Al Hayek et. al., 1984
Fe/SiO ₂	1.5	0.35	69	1.5	70	3.5	180	65	19	5	Fajerwerg et. al., 1996
Fe-Resin	27.5	5	10.6	0.67	80	3	120	100	76		Liou et. al., 2005
Fe/AC	4	0.5	1.06	1	50	3	120	100	78	1.1	Zazo et. al., 2006

Continuous experiments stirred tank reactor

CWPO

Working conditions

Q: 5 mL/min

Phenol: 100 mg/L

H₂O₂: 500 mg/L

pH: 3

Temperature: 50 °C

V_{reaction}: 0.92 L

HRT: 184 min ; τ: 167 g_{cat}.h/g_{Ph}

W_{catalyst}: 5.4 g/L

J. A. Zazo, J. A. Casas, A.F. Mohedano, J. J. Rodriguez. Appl. Catal. B Environ. 65 (2006) 261-268

CWPO

J. J. Rodríguez

Effect of Iron Precursor & AC support

Fe/C atomic ratios of catalysts

Catalyst	(Fe/C) _{BULK}	(Fe/C) _{XPS}	
Fe/C1-N	0.013	0.005	egg-yolk
Fe/C2-N	0.012	0.026	egg-shell
Fe/C3-N	0.013	0.045	egg-silen
Fe/C1-P	0.009	0.013	
Fe/C2-P	0.010	0.013	homogeneous
Fe/C3-P	0.009	0.012	

Incipient wetness impregnation Fe: 4%

Iron nitrate (N) \rightarrow aqueous solution

Iron pentacarbonyl (P) \rightarrow organic medium

A. Rey, M. Faraldos, J. A. Casas, J. A. Zazo, A. Bahamonde, J. J. Rodríguez. Appl. Catal. B Environ. 86 (2009) 69

% Fe _{leached} from Fe/AC and the new catalyst in presence of oxalic acid (100 mg/L)

Comparision of the catalytic activity of Fe/AC and the new catalyst

Cosmetic wastewater with $Fe/\gamma - Al_2O_3$

Long-term stability of the Fe $(4\%)/\gamma$ -Al₂O₃ catalyst in CWPO of cosmetic wastewater T = 85 °C; space-time: 9.8 kg cat.h/kg COD

Economic Analysis (€ /m³)

	Fenton (homogeneous)	$\frac{\text{CWPO}}{\text{with Fe}/\gamma-\text{Al}_2\text{O}_3}$
Investment	1.35	1.40
Operation & Maintenance		
H ₂ O ₂	2.20	1.80
Catalyst	0.10	0.06
Other	0.20	0.20
Electricity (1.9 kW-h/m ³)	0.17	0.17
Heat (32 MJ/m ³)		0.25
Sludge treat & disposal (30 €/t)	0.30	
Cosmetic wastewaters (100 m ³ /d)	4.32	3.88
COD ₀ : 3000 mg/L	200 mg/L Fe ²⁺	5g/L Fe/AC, 100 h
COD _f : 1200 mg/L	3800 mg/L H ₂ O ₂	2900 mg/L H ₂ O ₂

Fe_xO_y/γ -Al₂O₃ catalysts for CWPO

Magnetic catalyst

CWPO

4 % Fe

Incipient wetness impregnation with ferric nitrate

Calcination at 300 °C

Magnetic catalyst: Reduction at 350 °C

CWPO of CPs with $Fe_xO_y/\gamma - AI_2O_3$

CWPO

Evolution of 4-CP, 2,4-DCP and 2,4,6-TCP upon homogeneous Fenton oxidation ($[Fe^{3+}]_0 = 10 \text{ mg L}^{-1}$) and CWPO with Fe_xO_y/γ -Al₂O₃ (1 g L⁻¹); ($[CP]_0 = 100 \text{ mg L}^{-1}$; $[H_2O_2]_0$ at stoichiometric dose; $pH_0 = 3$; T = 50 °C).

Fenton provides more rapid conversion of the starting CP

M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez. Chem. Eng. J. 228(2013) 646-654

CWPO

Evolution of TOC and H_2O_2 upon homogeneous Fenton oxidation ([Fe^{3+]}₀ = 10 mg L⁻¹) and CWPO with FexOy/γ-Al₂O₃ (1 g L⁻¹); ([CP]₀ = 100 mg L⁻¹; [H₂O₂]₀ at stoichiometric dose; pH₀ = 3; T = 50 °C).

> **CWPO more efficient** than Fenton in terms of mineralization

CWPO

Evolution of TOC vs. H_2O_2 conversion upon 4-CP breakdown by homogeneous Fenton oxidation ([Fe³⁺]₀ = 10 mg L⁻¹) and CWPO with Fe_xO_y/ γ -Al₂O₃ (1 g L⁻¹); ([4-CP]₀ = 100 mg L⁻¹; [H₂O₂]₀ = 350 mg L⁻¹; pH₀ = 3).

CWPO allows more efficient consumption of H₂O₂

 $H_2O_2 + Fe^{2+} + H^+ \rightarrow HO^{\cdot} + Fe^{3+} + H_2O$

 $H_2O_2 + Fe^{3+} + H^+ \rightarrow HOO \cdot + Fe^{2+} + H^+$

 $HO' + HOO' \rightarrow H_2O + O_2$

 $HO^{\cdot} + H_2O_2 \rightarrow H_2O + HOO^{\cdot}$

 $HOO^{\textbf{.}}+Fe^{3+} \rightarrow Fe^{2+}+O_2+H^+$

 $HOO^{.} + Fe^{2+} \rightarrow Fe^{3+} + HOO^{-}$

CWPO

Remaining by-products (4h) from chlorophenols oxidation by homogeneous Fenton ($[Fe^{3+}]_0 = 10 \text{ mg } L^{-1}$) and CWPO with Fe_xO_y/γ -Al₂O₃ (1 g L⁻¹) at 50 and 90 °C ($[CP]_0 = 100 \text{ mg } L^{-1}$; $[H_2O_2]_0$ at stoichiometric dose; $pH_0 = 3$).

Chlorinated byproducts from Fenton oxidation of MCPs

CWPO

M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez. J. Haz. Mat. 190 (2011) 993-1000

Chlorinated byproducts from Fenton-like oxidation of PCPs

CWPO

M. Munoz, Z.M. de Pedro, G. Pliego, J.A. Casas, J.J. Rodriguez. Ind. Eng. Chem. Res. 51 (2012) 13092-13099

CWPO

Evolution of 4-CP, 2,4-DCP and 2,4,6-TCP (in equivalent Cl; solid symbols) and chloride ion (open symbols) concentration upon CWPO with Fe_xO_y/γ -Al₂O₃ catalysts. ([CP]₀ = 100 mg L⁻¹; [Fe_xO_y/ γ -Al₂O₃]₀ = 1 g L⁻¹; [H₂O₂]₀ = stoichiometric dose; pH₀ = 3; T = 50 °C).

Complete dechlorination

CWPO

CWPO of CPs with Fe_xO_y/γ -Al₂O₃

TOC and H_2O_2 conversion (4 h) upon CWPO of 2,4,6-TCP with the Fe_xO_y/γ -Al₂O₃ catalysts in successive applications ([Fe_xO_y/γ -Al₂O]_0 = 1 g L⁻¹). ([2,4,6-TCP]_0 = 100 mg L⁻¹; [H_2O_2]_0 = 190 mg L⁻¹; pH_0 = 3; T = 90 °C).

Magnetic Fe/γ -Al₂O₃ catalyst

Magnetization curves at room temperature of the Fe_xO_y/γ -Al₂O₃ catalyst before and after CWPO oxidation of 4-CP at different temperatures.

CWPO OF REPRESENTATIVE DRUGS OVER Fe_3O_4/γ -Al₂O₃

Munoz et al., J. Hazard. Mater., 331 (2017) 45-54.

CWPO OF REPRESENTATIVE DRUGS OVER Fe_3O_4/γ -Al₂O₃

CWPO OF REPRESENTATIVE DRUGS OVER Fe_3O_4/γ -Al₂O₃

STABILITY TESTS

OPERATION AT REPRESENTATIVE CONCENTRATIONS (μ g L⁻¹)

CWPO

Concentration (μ g L⁻¹)

SMX	2.6	1.2
ATL 4.5		7.6
MNZ	11.6	0.3
DTZ	0.9	0.1
тмр	1.6	3.1
RTD	2.4	0.5

Operating conditions $[pharmaceuticals]_0 = 10 \ \mu g \ L^{-1}$ $[H_2O_2]_0 = 100 \ mg \ L^{-1}$ $[Fe_3O_4/\gamma - Al_2O_3]_0 = 2 \ g \ L^{-1}$ $75 \ ^{\circ}C$ $pH_0 = 3$

CWPO OF SULFOMETHOXAZOLE WITH NATURAL MAGNETITE

CWPO

Catalyst reuse (3 consecutive runs)

Operating conditions $[SMX]_0 = 5 \text{ mg } L^{-1}$ $[H_2O_2]_0 = 25 \text{ mg } L^{-1}$ $[Fe_3O_4]_0 = 1 \text{ g } L^{-1}$ $25 \ ^{\circ}C$ $pH_0 = 5$ Iron leaching < 0.5 mg L⁻¹

Absence of carbon deposits (<0.1% wt.)

Surface area and magnetic properties unchanged

CWPO/solar with ilmenite

P. García-Muñoz, G. Pliego, J.A. Zazo, A. Bahamonde, J.A. Casas. Journal of Environmental Chemical Engineering 4 (2016) 542-548.

UA

Sección Departamental de Ingeniería Química

Thank you!

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

www.madrid.org

