Wet Air Oxidation Process and Catalyst Developments

Helder T. Gomes

ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

Introduction World Population

Fonte: U.S. Census Bureau (www.census.gov)

World Population

Increase in World Population

Desire to Increase Life Quality

Intensification of Agricultural and Industrial Development

Biological Treatment

Pollutants Degradation Through the Action of Microorganisms

UNSUITABLE TO TREAT EFFLUENTS PRESENTING HIGH TOXICITY, HIGH CONCENTRATED OR NON-BIODEGRADABLE ORGANIC COMPOUNDS

Incineration

Destruction of pollutants by combustion

ONLY ECONOMICALLY RECOMMENDED TO THE TREATMENT OF VERY CONCENTRATED EFFLUENTS (COD > 300 g/L)

Wet Air Oxidation (WAO/CWAO)

IDEAL TO THE TREATMENT OF EFFLUENTS WITH A CONCENTRATION CONSIDERED TOO HIGH FOR BIOLOGICAL TREATMENT AND SIMULTANEOUSLY TOO LOW FOR INCINERATION

WAO

Wet Air Oxidation (WAO)

R'COOH* : Residual Oxidation Intermediates
Low Molecular Weight Carboxylic Acids

Oxidizing Agent: Oxidizing Potential

- Oxidizing Agent: O₂
- Oxidizing Potential: low when compared with other oxidizing agents

Oxidant	E ^o (V)
Fluor (F ₂)	3.03
Hydroxyl Radical (HO•)	2.80
Atomic Oxygen (O)	2.42
Ozone (O ₃)	2.07
Hydrogen Peroxide (H ₂ O ₂)	1.77
Hydroperoxyl Radical (HOO•)	1.70
Chlorine dioxide (ClO ₂)	1.50
Hypochlorous acid (HClO)	1.49
Chlorine (Cl ₂)	1.36
Oxygen (O ₂)	1.23

Oxidizing Agent: Solubility

- Up to 100°C the solubility of O₂ in aqueous media decreases with T
- Above 100°C the solubility of O₂ in aqueous media increases with T
- The solubility of O₂ in aqueous media increases with P

Hydrometallurgy, 48 (1998), 327-342

WAO: Typical Conditions

Temperature: 125-320°C

Increased O₂ solubility and reaction rate

Total Pressure: 50-200 bar

 \rightarrow To maintain the system in liquid phase and to increase O₂ availability \rightarrow Higher pressures when air is used (less expensive)

16/07/2017

Zimpro® Wet Oxidation: www.usfilter.com

• COD ∈ [10-100 g/L]

- Residence Time: 15-120 min
- COD Removal: 75-90%

WAO Reactions

 $RH + O_2 \rightarrow RO-OH$ $RO-OH \rightarrow RO^{\bullet} + HO^{\bullet}$ $RO-OH + RH \rightarrow RO^{\bullet} + R^{\bullet} + H_2O$ $R^{\bullet} + O_2 \rightarrow RO-O^{\bullet}$ $RO-O^{\bullet} \rightarrow R^{\prime \bullet} + CO_2$ $R^{\bullet} + HO^{\bullet} \rightarrow ROH$ $R^{\bullet} + 2HO^{\bullet} \rightarrow R'COOH$

Phenol Oxidation

Duprez et al., Catal. Today 1996, 29, 317-322

WAO: Commercialization

Zimpro® (1950's)

Pioneering Company: Zimpro Products (US Filter \rightarrow Vivendi \rightarrow Siemens Water Technologies, Germany (since 2003))

First Unit Commercialized

Treatment of wastewater from pulp industry

Zimpro Units Commercialized

Sludge treatment	105
Treatment of industrial effluents	41
Activated carbon regeneration	16
Other applications	5

IN TOTAL OVER 200 WAO UNITS WERE COMMERCIALIZED FOR INDUSTRIAL AND MUNICIPAL APPLICATIONS

Process PACT & Sludge Treatment

Process PACT (powdered activated carbon treatment) WAO + Biological Treatment

Regeneration of Activated Carbon Destruction of Sludge

Treatment of Industrial Effluents

WAO for propylene oxide/styrene monomer production effluents Zimpro® wet air oxidation at Repsol YPF, Tarragona Spain (2000) www.water.siemens.com

WAO: Commercialization

Kenox Technology Corporation's Wet Air Oxidation (WAO) process technology http://www.merichem.com/wet-air-oxidation-wao Kenox® (1980's)

Kenox Technology Corporation Canada

 \rightarrow Merichem Company (since 2015)

VerTech® (1970's)

Providentia Environment Solutions Holland (since 2008)

Treatment of Highly Polluted Industrial Wastewaters (Chemical, Pharmaceutical ...), Spent Caustics (Petrochemical) and Sludges

16/07/2017

WAO vs CWAO

WAO vs CWAO

Lower Energetic and Investment Costs Higher Oxidation Efficiency

DEVELOPMENT OF SUITABLE CATALYSTS

Homogeneous Catalysts

Catalysts

• $Cu(SO_4)$, $FeCl_2$, ...

Loprox® at Bayer HealthCare, La Felguera Spain (1993) www.bayertechnology.com

Loprox® (1990's)

Bayer Technology Services Germany (10 units installed)

Wetox® (2010)

Viclink New Zealand

Pre-treatment of Highly Polluted Industrial Wastewater, Spent Caustic Streams and Sludge Treatment

Homogeneous Catalysts

- Catalysts
 - Cu(SO₄), FeCl₂, ...

Metallic lons Present in the Treated Solution

Additional Separation Step Catalyst Recycling ?

Heterogeneous Catalysts: Transition Metals

Catalysts

- Co:Bi (5:1) and Mn:Ce (1:1) composite oxides
- Cu, Zn, Cr, V and Ti oxides
- Cu/Al₂O₃, Fe/SiO₂, ...

Fast Deactivation (condensation products) Metal leaching into the solution

Additional Separation Step

Heterogeneous Catalysts: Noble Metal Supported Catalysts

Nobel Metal Supported Catalysts

Adsorption Mechanism

Reaction Mechanism

 $ButO_2H \longrightarrow [ButO_2H]_{Ads}$

- P: Propionic acid
- A: Acetic acid
- C: Final oxidation products (CO₂ and H₂O)

Olive Mill Wastewaters CWAO

 \rightarrow OMW are characterized by high COD (>40 g/L) and strong brown colour

 \rightarrow OMW contain a large diversity of organic compounds (including phenols, polyphenols and polyalcohols) with low biodegradability and high toxicity

Gomes et al., Catalysis Today 124 (2007) 254-259

- Pt/AC and Ir/AC increase considerably effluent's TOC removal
- Complete TOC removal is obtained with Pt/AC at 200°C after 8 h

Heterogeneous CWAO: Commercialization

- Process NS-LC[®] (Nippon Shokubai, Japan)
 - 10 Units in Operation
 - Operating costs: 1.5-3x lower than WAO
 - Catalyst: Pt-Pd/TiO₂-ZrO₂
 - Temperature: 220°C; Pressure: 40 bar
 - Pollutants: Phenol, Formaldehyde, Acetic Acid, Glucose ...
- Process Osaka Gas® (Osaka Gas, Japan)
 - Catalyst: Precious metals/TiO₂-ZrO₂
 - Temperature: 250°C; Pressure: 68.6 bar
 - Pollutants: effluents from coal furnaces, concentrated in cyanides, municipal wastewaters ...

NS-LC® wet air oxidation http://www.shokubai.co.jp

16/07/2017

Non-supported Carbon Catalysts in CWAO

- In the last decade, metal-free carbon materials were investigated as catalysts in CWAO
- Important Features: Texture and Surface Chemistry
- Textural properties easily tuned during synthesis procedure
 e.g. Mesoporous Carbon Xerogels: more advantageous for liquid
 phase reactions
 → minimization of diffusion limitations
 and catalyst deactivation
 - Surface chemistry properties are easily tuned by proper liquid phase and gas phase treatments

Carbon Materials: Surface Chemistry

Non-supported carbon materials: CWAO studies

- The catalytic activity of carbon materials in CWAO was subject of many studies considering O-, N- and S-containing groups
- Although it is generally accepted that basic carbon materials present higher performance, in some works catalysts with acidic nature present high pollutant removals

Oxalic Acid Rocha et al., Appl. Catal. B Environ. 2011, 104, 330-336

Acidic Carbon Xerogels: Aniline Removal Mechanism

Conclusions

• Wet Air Oxidation (WAO)

 \rightarrow Suitable process to treat wastewaters with high organic load

- \rightarrow Final Solution or pre-treatment technology
- \rightarrow Economic alternative to incineration
- Catalytic Wet Air Oxidation (CWAO): Introduction of Catalysts
 - \rightarrow Lower operating conditions and investment costs
 - \rightarrow Higher oxidation efficiency
- Catalysts in CWAO
 - \rightarrow Homogeneous catalysts
 - \rightarrow Supported transition metals
 - \rightarrow Supported noble metals

→ Carbon materials with proper texture and surface chemistry ^{16/07/2017} 35