Microbial inactivation by the solar-assisted Fenton process at near-neutral pH

Dr. Stefanos Giannakis
Dipl. Civil Engineer, MSc, PhD, DSc

Group of Advanced Oxidation Processes
École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

Porto, 12 July 2017
Introduction? Lucky to present so late 😊

From Fenton...

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{HO}^\bullet + \text{OH}^- \]

\[k_1=76 \text{ M}^{-1}\text{s}^{-1} \]

\[\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HO}_2^\bullet + \text{H}^+ \]

\[k_2=0.01 \text{ M}^{-1}\text{s}^{-1} \]

...to photo-Fenton

\[\text{Fe}^{3+} + \text{H}_2\text{O} \xrightarrow{hv} \text{Fe}^{2+} + \text{H}^+ + \text{HO}^\bullet \]

Limiting step!
Photo-catalytic significance of iron

<table>
<thead>
<tr>
<th>Reaction No.</th>
<th>Reaction</th>
<th>Reaction Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Fe$^{3+}$ + H$_2$O \leftrightarrow Fe(OH)$^{2+}$ + H$^+$</td>
<td>$(k_1 = 2.9 \times 10^{-3} M)$</td>
</tr>
<tr>
<td>(2)</td>
<td>Fe$^{3+}$ + 2H$_2$O \leftrightarrow Fe(ОН)2_2 + 2H$^+$</td>
<td>$(k_2 = 7.62 \times 10^{-7} M^2)$</td>
</tr>
<tr>
<td>(3)</td>
<td>2Fe$^{3+}$ + 2H$_2$O \leftrightarrow Fe$_2$(OH)$^{4+}$ + 2H$^+$</td>
<td>$(k_{22} = 0.8 \times 10^{-3} M)$</td>
</tr>
<tr>
<td>(4)</td>
<td>Fe$^{3+}$ + H$_2$O \leftrightarrow Fe$^{3+}$(HO$_2$)$^{2+}$ + H$^+$</td>
<td>$(k_l = 3.1 \times 10^{-3})$</td>
</tr>
<tr>
<td>(5)</td>
<td>Fe(ОН)2_2 + H$_2$O \leftrightarrow Fe$^{3+}$(OH)(HO$_2$)$^+$ + H$^+$</td>
<td>$(k_l = 2 \times 10^{-4})$</td>
</tr>
<tr>
<td>(6a)</td>
<td>Fe$^{3+}$(HO$_2$)$^{2+}$ \rightarrow Fe$^{2+}$ + HO$_2^*$</td>
<td>$(k_6 = x 10^{-3} s^{-1})$</td>
</tr>
<tr>
<td>(6b)</td>
<td>Fe$^{3+}$(OH)(HO$_2$)$^+$ \rightarrow Fe$^{2+}$ + HO$_2^*$ + OH$^-$</td>
<td>$(k_6 = x 10^{-3} s^{-1})$</td>
</tr>
<tr>
<td>(7)</td>
<td>Fe$^{2+}$ + H$_2$O \rightarrow Fe$^{3+}$ + HO* + OH$^-$</td>
<td>$(k_7 = 63 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(8)</td>
<td>Fe$^{2+}$ + HO* \rightarrow Fe$^{3+}$ + OH$^-$</td>
<td>$(k_8 = 3.2 \times 10^8 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(9)</td>
<td>HO$^$ + H$_2$O \rightarrow HO$_2^$ + H$_2$O</td>
<td>$(k_9 = 3.3 \times 10^9 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(10a)</td>
<td>Fe$^{2+}$ + HO$_2^*$ \rightarrow Fe$^{3+}$(HO$_2$)$^{2+}$</td>
<td>$(k_{10a} = 1.2 \times 10^6 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(10b)</td>
<td>Fe$^{2+}$ + O$_2^*$ + H$^+$ \rightarrow Fe$^{3+}$(HO$_2$)$^{2+}$</td>
<td>$(k_{10b} = 1 \times 10^7 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(11a)</td>
<td>Fe$^{3+}$ + HO$_2^*$ \rightarrow Fe$^{2+}$ + O$_2$</td>
<td>$(k_{11a} < 2 \times 10^3 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(11b)</td>
<td>Fe$^{3+}$ + O$_2^*$ \rightarrow Fe$^{2+}$ + O$_2$</td>
<td>$(k_{11b} = 5 \times 10^7 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(12a)</td>
<td>HO$_2^$ \rightarrow O$_2^$ + H$^+$</td>
<td>$(k_{12a} = 1.58 \times 10^5 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(12b)</td>
<td>O$_2^$ + H$^+$ \rightarrow HO$_2^$</td>
<td>$(k_{12b} = 1 \times 10^{10} M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(13a)</td>
<td>HO$_2^$ + HO$_2^$ \rightarrow H$_2$O$_2$ + O$_2$</td>
<td>$(k_{13a} = 8.3 \times 10^5 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(13b)</td>
<td>HO$_2^$ + O$_2^$ + H$_2$O \rightarrow H$_2$O$_2$ + O$_2$ + OH$^-$</td>
<td>$(k_{13b} = 9.7 \times 10^7 M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(14a)</td>
<td>HO$^$ + HO$_2^$ \rightarrow H$_2$O + O$_2$</td>
<td>$(k_{14a} = 0.71 \times 10^{10} M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(14b)</td>
<td>HO$^$ + O$_2^$ \rightarrow O$_2$ + OH$^-$</td>
<td>$(k_{14b} = 1.01 \times 10^{10} M^{-1} s^{-1})$</td>
</tr>
<tr>
<td>(15)</td>
<td>HO$^$ + HO$^$ \rightarrow H$_2$O$_2$</td>
<td>$(k_{15} = 5.2 \times 10^9 M^{-1} s^{-1})$</td>
</tr>
</tbody>
</table>

Reactions initiated by iron

Initiation

Propagation

Termination

Highlights of the present work

Microorganism inactivation

Kinetics of single-target elimination
- Bacteria
- Viruses
- Yeasts

Photo-Fenton: near-neutral pH
- Low Fe(II),(III) and H_2O_2 concentration
- Controlled, simulated wastewater experiments
- Solar simulators as light source
Our models...

Male Somatic 2 Coliphage

Escherichia coli K-12

Saccharomyces Cerevisiae

\[\times 50 \text{ times} \]

\[\times 5 \text{ times} \]

Structural differences

Surface coat protein
Packed under pressure

Only 1 to 2 layers of peptidoglycan
Plasma membrane

Chitin, thick outer layer
Double layer plasma membrane

27.5 nm

1 – 2 μm

5-10 μm
1) Action of solar light: baseline, and an AOP in disguise
2) Addition of H_2O_2
3) Addition of Iron $\text{Fe}^{2+}, \text{Fe}^{3+}, \text{Fe}_x\text{O}_y$
4) Viruses – what changes?
5) Yeasts – Similarities and differences
6) Effect of the matrix
Bacterial inactivation:
Step-wise construction of a mechanistic interpretation
Baseline: effect of solar light
Direct action of light

Repair!
Solar light alone is an “indirect” AOP
ONLY BY SOLAR LIGHT

E. coli

ROS (HO•, O2, H2O2) + Fe2+ → HO• + Fe3+

External
PS \to \text{PS}^*

Internal
PS \to \text{PS}^*

ROS attacks

\text{Excited state} \to \text{ROS attacks}

\text{O}_2

\text{Fe}^{3+}\to \text{Fe}^{2+}

\text{hv}

hv

\text{photo-Fenton reaction}

\text{DNA}

\text{UVB Direct action}

\text{UVA}

\text{ONLY BY SOLAR LIGHT}
Solar light + H$_2$O$_2$
Solar light + H_2O_2 + Fe
Previous work on bacteria

The effect of Fe$^{2+}$, Fe$^{3+}$, H$_2$O$_2$ and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12.

Dorothee Spuhler, Julian Andrés Rengifo-Herrera, César Pulgarín.
Institute of Chemical Sciences and Engineering (ISIC), EPF Lausanne, CH-1015 Lausanne, Switzerland.
Received 26 November 2009, Revised 1 February 2010. Accepted 4 February 2010. Available online 12 February 2010.

But also...

Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. Applied Catalysis B: Environmental 148-149, 144-153.

Iron oxides semiconductors are efficiencies for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166, 497-508.

...and many more
Iron oxides as semiconductors and as pF catalysts

Results:
I: TiO$_2$ photocatalysis
II: pF with FeSO$_4$
III: hv/FeSO$_4$
IV: hv/H$_2$O$_2$
V: Solar light
VI: Fenton (dark)

Cultivability

MDA formation

Cell wall degradation

Internal damage

Integrated mechanism

Previous work on viruses

Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H₂O₂ and Fe²⁺/³⁺

Fe/H₂O₂ ratio: 1/1 I: 300 W/m²
Proposed inactivation mechanism

Key to inactivation: iron complexation with HA

Available iron throughout the test!

Photo-Fenton takes place!

Yeast Inactivation: a brief summary in MQ

- \(\text{hv/H}_2\text{O}_2/\text{FeSO}_4 \): mainly homogeneous external process
- \(\text{hv/H}_2\text{O}_2/\text{Fe-Oxides} \): goethite-natural semiconductor or heterogeneous mode of action
- \(\text{hv/H}_2\text{O}_2/\text{Fe-Citrate} \): mild complex achieving homogeneous process in higher pH

DNA and protein damages (photo-Fenton process)

$hv/FeSO_4/H_2O_2$ at $pH = 5.5$

Cell wall proteins

<table>
<thead>
<tr>
<th>0’</th>
<th>30’</th>
<th>60’</th>
<th>120’</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>130</td>
<td>95</td>
<td>72</td>
</tr>
<tr>
<td>72</td>
<td>55</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>34</td>
<td>26</td>
<td>17</td>
<td>10</td>
</tr>
</tbody>
</table>

DNA

<table>
<thead>
<tr>
<th>0’</th>
<th>30’</th>
<th>45’</th>
<th>60’</th>
<th>120’</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA band pattern for each time point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cytoplasmic proteins

<table>
<thead>
<tr>
<th>0’</th>
<th>30’</th>
<th>45’</th>
<th>60’</th>
<th>120’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein band pattern for each time point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Establishing a timeline for hv/H$_2$O$_2$/Fe, verifies that...

...internal photo-Fenton is the driving inactivation force!
Establishing a timeline for hv/H₂O₂/Fe, verifies that...

Loss of cultivability: 1st indication of inactivation

Budding stops

...internal photo-Fenton is the driving inactivation force!
Establishing a timeline for hv/H_2O_2/Fe, verifies that...

Loss of viability: indication of death

...internal photo-Fenton is the driving inactivation force!
Establishing a timeline for hv/H$_2$O$_2$/Fe, verifies that...

0' 10' 20' 30' 45' 60' 120'

Profound DNA and cytoplasmic protein damage: cause of inactivation

...internal photo-Fenton is the driving inactivation force!
Establishing a timeline for hv/H$_2$O$_2$/Fe, verifies that...

...internal photo-Fenton is the driving inactivation force!
Proposed inactivation mechanism

Wastewater is...

- Highly heterogeneous: Effluent Organic Matter (EfOM)
- Loaded with targets for light: Oxidizable Organic Matter (OxOM)
- Providing radical targets: OM and Microorganisms
- Containing photo-sensitizers: Photosensitizable Organic Matter (PhOM)
Proposed degradation pathway

Abbreviations

EfOM: Effluent Organic Matter

PhOM: Photo-sensitizable fraction of EfOM

OxOM: Oxidizable fraction of EfOM

(i)-(vii): solar-induced pathways

Summary: The time for >4-log inactivation

- Male Somatic 2 coliphage: 2 min
- *Escherichia coli* K-12: 90 min
- *Saccharomyces Cerevisiae*: 180 min

The graph shows the inactivation of viruses, bacteria, and yeasts over time.
Attention: Dynamic response of the microorganisms

Fe \quad \text{H}_2\text{O}_2

1^{st}, 2^{nd} \text{ order reaction rate}

Reciprocity law, photolysis

BUT

Low intensity
Low concentration

20-30 min
Take – home messages:

Mechanistic proposition photo-Fenton action mode
- Cultivability
- Flow cytometry
- Use of single knock-out mutant strains
- DNA damages (Electrophoresis)
- Cell wall & internal protein degradation (Electrophoresis)
- Membrane peroxidation (MDA)
- Membrane integrity (ONPG)
- ROS generation (EPR, ESR)
- Literature

Kinetics?

Thermodynamic aspects?

Proper controls?

View in the final application – Regrowth?

What do you want to prove?
Thank you for your attention, questions?

More info:
Dr. Stefanos Giannakis, E-mail: stefanos.giannakis@epfl.ch

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 688928.