

2nd Summer School on Environmental applications of Advanced Oxidation Processes

University of Porto, Department of Department of Chemical Engineering

Porto (Portugal), July 10-14, 2075

Wastewater treatment by ozonation

Santiago Esplugas

Department of Chemical Engineering, University of Barcelona, Spain.

OUTLINE

- ☐ Introduction
 - Ozone. Properties
 - Ozone generation
- \square WW O_3 treatment
 - WW characteristics
 - Modeling of O₃ mass transfer
 - IOD, TOD, K_La, k_d
 - •WW changes and pollutants removal
- **□** Conclusions

- 1785: M. van Marun . Oxygen with electric discharges gives a peculiar odor (irritant).
- 1840: Schönbein discovered Ozone, a different substance based on Oxygen (from Greek *ozein*, smell)
- 1856: Thomas Andrews demonstrate that **Ozone is only** formed by Oxygen
- 1863: Soret found the relation Oxygen-Ozone (three volumes of oxygen produces two volumes of ozone)

Ozone tropospheric – stratospheric

Contaminant - UV filter

Thermodynamically unstable ⇒ have to be produced "in situ"

$$3 O_2 \leftrightarrow 2 O_3$$

ozone% explosion limit = 30%

Physical properties of Ozone

- Blue gas, irritant and more heavy than air
- Very reactive and unstable. It has to be generated "in situ".
- 14 times more soluble in water than oxygen .
- Water solubility increases with pressure

Water solubility decreases with temperature

Chemical properties of Ozone

Ozone reactivity

$$O_3 - 3/2 O_2 \Delta H^\circ = -34.61 \text{ kcal/mol} = 144.8 \text{ kJ/mol}$$

 $O_3 + 2 H^+ + 2 e^- - O_2 + H_2O E^\circ = 2.07 \text{ V}$

Oxidation inorganics

Oxidation organics

Chemical properties of Ozone

Standards redox potentials (298 K, H₂)

Name	E ° (V)
Fluor	3,03
Hydroxyl radical	2,80
Ozone	2,07
Hydrogen peroxide	1,78
Potassium permanganate	1,68

Molecular O₃ attack is selective: attack on high electronic density sites. HO· attack is much more unselective: few compounds resist to its action.

HO· Initiators	HO· Promoters	HO· Inhibitors
Hydroxide ions Hydrogen peroxide UV ₂₅₄ radiation Heterogeneous catalysts Organic matter	Ozone Hydrogen peroxide Organic Matter	Hydrogen peroxide Carbonates Organic Matter Ter-butanol

Ozone generation

Irradiation of air or oxygen with UV radiation (185 nm). Low ozone concentrations (0.25% in weight) and small flow rate. Used when small productions are required (labs)

Electric discharge: The most used method in water and wastewater treatment. The electrical discharge breaks the oxygen bond and produces two oxygen atoms.

Ozone generation

Electric discharge

- the inlet gas :air or oxygen
- 2-3 times more production of ozone when using oxygen instead of air. Additionally it is avoided the NOx formation.

-pre-treatment of gas needed

- 1) gas compression
- 2) gas filtering (to avoid foreign particles)
- 3) gas drying to a very low % of humidity to increase the production performance and to avoid NOx formation.
- 4) Unit of gas-liquid contact (ozone transfer)
- 5) Thermic or catalytic ozone killer
- main drawback only the 5% of the used electric energy goes to the oxygen-oxygen bonds. The rest appears as light radiation and heat. Consequently the dielectrics have to be cooled with air or water.

COST (2013) 11- 16 kW.h/kg Ozone

O₃ in Wastewater treatment CLASICAL WASTEWATER TREATMENT PLANT (WWTP)

Water and Wastewater parameters

Conventional parameters

- Chemical Oxygen Demand
- Biological Oxygen Demand
- Dissolved Organic Carbon
- UV-Absorbance at 254 nm
- Suspended Solids
- Turbidity
- Inorganic Carbon
- pH
- Nitrate and ammonia content

Micropollutant analysis

- VOCs
- PAHs
- Pesticides
- Phthalates
- Octylphenols//nonylphenols
-

Organic matter fractionation

LC-OCD-ON-UVAD

Water and Wastewater parameters

LC-OCD ANALYSIS

LC-OCD-OND-UVAD stands for Liquid Chromatography (size exclusion) Organic Carbon Detection, Organic Nitrogen Detection and Ultra-Violet Detection.

Fraction	Molecular weight	Description
Biopolymers	>> 20,000 Da	Polysaccharides and proteins. High molecular weight, hydrophilic and non-UV absorbable.
Humic substances	≈ 1,000 Da	Calibration based on Suwannee River standard from IHSS.
Building blocks or humic-like substances	350 – 500 Da	Breakdown products of humic substances.
Acids and low- molecular weight humics	< 350 Da	Aliphatic and low molecular weight organic acids
Low-molecular weight neutrals	< 350 Da	Weakly or uncharged low molecular weight compounds as well as low molecular weight slightly hydrophobic compounds

O₃ in wastewater treatment

- Contaminant removal
- COD removal
- TOC removal
- BOD changes

Stoichiometry g (C, TOC, COD,UVA) removed/g O₃

Kinetics (C, TOC,COD, UVA) 1st fast reaction 2nd slow reaction

Maximum of BOD

Modeling of O₃ mass transfer & Chemical Reaction

Ozonation is an mass transfer process

- Mass transfer rate dependent on
 - Physical properties of phases
 - Concentrations at the interface
 - Degree of turbulence
 - gas hold-up and bubble size
- Two-film model

$$N = (K_L.a).(C_L^*-C_L).V_L$$

- $N = O_3$ flux density $(g/(m^2.s))$
- $C_L^* = f(C_G, P, T)$ Henry's law (g/m^3)
- C_L = f(mixing conditions) (g/m³)
- K_L.a = f(hydrodynamic & operating conditions, reactor configuration) (s⁻¹)
- A = interfacial area (m⁻¹)

Ozone – water : control in the liquid

$$k_L = K_L$$

Absorption with Chemical Reaction

$$r_{O3} = k_{O3} \cdot [O_3] \cdot [M]$$

$$Ha = \frac{\sqrt{D_{O3}k_{O3}[M]}}{k_L}$$

Hatta number

O₃ mass transfer

Experimental data of $k_L a$ vs. u_G in the bubble columns:

(1)-
$$k_L a = 0.867 u_G$$
; (2) - $k_L a = 1.89 u_G^{0.932}$; (3) - $k_L a = 4.12 u_G^{1.02}$; (4) - $k_L a = 0.67 u_G^{1.15}$

$$r_{O3} = k_{O3}.[O_3].[M] = k_d.[O_3]$$

$\frac{dS}{dt} = -$	$-\mathbf{k}_{O3}(O_3)(S) - \mathbf{k}_{OH}(O_{I})$	H)(S)
Substance	$k_{O3} [M^{-1} s^{-1}]$	$k_{OH} [10^9 M^{-1} s^{-1}]$
pCBA ^a	0.15	5.2
Ketoprofend	0.4	8.4
Ibuprofen ^b	9.1	7.4
Clofibric acid ^{b, c}	20	4.7
Bezafibrate ^b	590	7.4
Ciprofloxacin ^e	1.9×10^{4}	4.1
Naproxen ^{b, c}	2×10^5	9.6
Trimethoprim ^e	2.7×10^{5}	6.9
Carbamazepine ^b	3×10^{5}	8.8
Enrofloxacine	6.7×10^{5}	4.5
Diclofenacb	1×10^6	7.5
Sulfamethoxazole ^b	2.5×10^{6}	5.5

U. Hubner, S. Keller, M. Jekel. Evaluation of the prediction of trace organic compound removal during ozonation of secondary effluents using tracer substances and second order rate kinetics. Water Research 47 (2013) 6467-6474

Modeling O₃ mass transfer & chemical reaction

$$Ha = \frac{\sqrt{D_{O3}k_{O3}[M]}}{k_{L}}$$

Hatta number

O₃ and O₃-AOP reactors

	Determining characteristic(s)	Reactor type
Ha<0.02 - Very slow reaction	Liquid hold-up	Bubble column
0.02 <ha<0.3 reaction<="" slow="" th="" –=""><th>Chemical regime</th><th>Bubble column Stirred tank</th></ha<0.3>	Chemical regime	Bubble column Stirred tank
0.3 <ha<3 fast="" quite="" reaction<="" th="" –=""><th>Liquid hold-up Interfacial area</th><th>Stirred tank</th></ha<3>	Liquid hold-up Interfacial area	Stirred tank
Ha > 3 – Fast reaction	Interfacial area	Packing column
Ha >>3 – Instantaneous reaction	Transfer coefficient Interfacial area	Static mixer Ejector

IOD (immediate O₃ demand) **TOD** (transferred O₃ dose)

IOD: minimum amount of ozone dose (mg/L) to be transferred (**TOD**) to have dissolved ozone in water (continuous flow)

Semicontinuous ozonation: simple model

$$TOD = \int_{0}^{t} \frac{Q_{Gas}}{V_{Liq}} \times ([O3]_{gas \text{ in}} - [O3]_{gas \text{ out}}) \times dt_{r}$$

Ozone balance in liquid phase

$$TOD < IOD [O3] = 0$$

TOD > IOD
$$\frac{d[O3]}{dt} = K_L a \times ([O3]^* - [O3]) - k_d \times [O3]$$

Ozone balance in gas phase

$$Q_{Gas} ([O3]_{gas in} - [O3]_{gas out}) = K_L a([O3] * - [O3]) V_{Liq} = k_d [O3] V_{Liq} + \frac{d[O3]}{dt} V_{Liq}$$

$$P_{O3} = Hx_{O3}^*$$
 Henry's law

$$H = 3.810^{7} [HO^{-}]^{0.035} \exp(-2428/T)$$
$$276.5K < T < 333K \quad 0.65 < pH < 10.2$$

Roth and Sullivan equation

Estimation K_La , k_d at lab scale

$$\ln \frac{[O3]_{\text{max}} - [O3]}{[O3]_{\text{max}}} = -(K_L a + k_d)t$$

when
$$\frac{d[O3]}{dt} = 0$$

$$k_d = \frac{Q_{Gas} \left([O3]_{gas in} - [O3]_{gas out} \right)}{[O3] V_{Liq}}$$

$$\frac{[O3]^*}{[O3]_{\text{max}}} = \frac{K_L a + k_d}{K_L a}$$

$$P_{O3} = Hx_{O3}^*$$
 Roth and Sullivan

$$H = 3.810^{7} [HO^{-}]^{0.035} \exp(-2428/T)$$
$$276.5K < T < 333K \quad 0.65 < pH < 10.2$$

EXPERIMENTAL

	DOC	COD	UV254	рН	Turbidity	IC	SS
Effluent	mg/L	mg/L	m ⁻¹		NTU	mg/L	mg/L
P1	69.5	265	26.9	7.6	131	86	67
P2	59.4	367	36.8	7.6	120	60	97
Р3	109.7	778	96.3	7.4	170	107	250
P4	94.7	885	74.2	8.5	285	54	512
S1	6.7	29	12.0	8.1	7.8	65	-
T1	6.5	19	11.4	6.6	0.3	16	-
T2	13.2	50	26.2	8.5	0.1	52	-

	IOD	K, a	k _d
Effluent	mg/L	min ⁻¹	min ⁻¹
P1	64	0.83	0.80
P2	83	0.76	0.19
Р3	348	0.50	0.66
P4	249	0.79	0.30
S1	6.5	0.29	0.087
T1	10	1.90	0.08
T2	12	0.67	0.10

Removal of CECs by O₃

Marce et al CEJ 283 (2016) 768-777

Marce et al O₃ World Congress. Barcelona October 2015

WW changes: Size Molecular distribution

LC-OCD Analysis

HS and LMW neutrals with ozone dose

Building blocks with ozone dose

Cleavage of high MW into lower MW substances and acid formation

Conclusions

- Ozonation of wastewater effluents is able to reduce COD, DOC, UVA,
 Turbidity at the same time than the contaminant concentration.
- At relatively low ozonation doses there is an increase of the biodegradability, BOD/COD, of the effluent.
- During ozonation there are important changes in the Size Molecular Distribution of the Organic Matter.
- Examination of the ozone mass balance provides three fundamental parameters: the instantaneous ozone demand, ozone mass transfer coefficient and the ozone decay kinetic constant.
- Their knowledge is of primary importance for the design of ozone contactors and for the determination of the appropriate operating conditions.

2nd Summer School on Environmental applications of Advanced

Processes

University of Porto, Department

Engir

Porto (Portugo

at of Chemical

, 2075

Wastewater

ent by ozonation

ักtiago Esplugas

Department of Camical Engineering, University of Barcelona, Spain.

