2nd Summer School on Environmental applications of AOPs, Porto (Portugal), July 10-14, 2017

Ionizing radiation as an efficient AO(R)P method for remediation of waters and wastewaters

PRESENCE OF DIFFERENT CLASSES OF HARD-TO-REMOVE CONTAMINANTS IN WATERS AND WASTEWATERS

Presence of pharmaceutical compounds (and their metabolites) in worldwide TAP WATER

Therapeutic use	Compound	Maximal concentration detected (ng/L)	Country	Refs.
Antibiotics	Triclosan	734	USA	Loraine and Pettigrove (2006)
Anticonvulsants	Carbamazepine	24	Canada	[f]
		140-258	USA	Stackelberg et al. (2004), Stackelberg et al. (2007)
		43.2	France	Togola and Budzinski (2008)
		60	Germany	Heberer et al. (2004)
	Dilantin	1.3	USA	Vanderford and Snyder (2006)
	Primidone	40	Germany	Heberer et al. (2004)
Antidepressants, anti-anxiety	Amitryptilline	1.4	France	Togola and Budzinski (2008)
	Diazepam	10	UK	[g]
		23.5	Italy	Zuccato et al. (2000)
	Meprobamate	5.9	USA	Vanderford and Snyder (2006)
Antineoplastics	Bleomycin	13	UK	(b)
Iodinated X-ray contrast media	Diatrizoate	1200	Germany	Pérez et Barceló (2007b)
	lopromide	<50	Germany	Pérez et Barceló (2007b)
Lipid regulators	Bezafibrate	27	Germany	[a]
	Clofibric acid	50-270	Germany	[a], [c], [d], [e], Heberer et al. (2004)
		5.3	Italy	Zuccato et al. (2000)
NSAIDs and analgesics	Gemfibrozil	70	Canada	[f]
	Acetaminophen	210.1	France	Togola and Budzinski (2008)
	AMDOPH	900-1250	Germany	Heberer et al. (2004), Reddersen et al. (2002)
	Diclofenac	6-35	Germany	[a], Heberer et al. (2004)
		2.5	France	Togola and Budzinski (2008)
	DP	1.10	Germany	Zühlke et al. (2004b)
	Ibuprofen	3	Germany	[a]
	1961 1962 1973	0.6	France	Togola and Budzinski (2008)
		8.5	Finland	Vieno et al. (2005)
		1350	USA	Loraine and Pettigrove (2006)
	Ketoprofen	8.0	Finland	Vieno et al., 2005
		3.0	France	Togola and Budzinski (2008)
	PDP	0.24	Germany	Zühlke et al. (2004b)
	Phenazone	250-400	Germany	Zühlke et al. (2004b), Reddersen et al. (2002)
	Propyphenazone	80-240	Germany	Zühlke et al. (2004b), Reddersen et al. (2002), Heberer et al. (2004)
Opioidanalgesics	Codein	30	USA	Stackelberg et al. (2007)
Psycho-stimulants	Caffeine	60-119	USA	Stackelberg et al. (2007), Stackelberg et al. (2004)
		22.9	France	Togola and Budzinski (2008)

Mompelat et al., Environ. Internat., 35 (2009) 803

Presence of estrogenic hormones in SURFACE WATER

PRESENCE OF 5 DISSOLVED ESTROGENIC HORMONES IN SURFACE WATERS, STORM RUNOFF AND WWTP EFFLUENT AT DIFFERENT SITES IN THE ORGE BASIN (FRANCE)

Miege et al., Trends Anal. Chem., 28 (2009) 186

How efficient is the removal of organic/emerging pollutants in conventional treatment plants (incl. AOPs)?

phase of wastewater-treatment plants with activated sludge processes (from [4]) Hormones Influent concentration (ng/L) Effluent concentration (ng/L) Removal (%) min min RSD max mean n max mean n R n 2.4 670 67 109 0.6 95 E1 21 79 74 39 59 α -E2 1.5 17 7.4 0.1 36 0.8 79 22 3 9 6 β-E2 2.5 125 22 108 0.3 30 2.8 63 88 13 52 EE2 0.4 70 4.2 70 0.2 5 0.9 33 68 33 46 E3 15 660 115 36 0.4 275 13 33 92 20 36 n, Number of individual data. Miege et al., Trends And! Chem., 28 (2009) 186 100 Removal efficiency (%) 80 60 40 20 Internation ACCO+12.11 DBR 659 28.A 101015±264 1019±28.11 R BOST S.O. 79 101082232) 1098205 BE(412+219) DEFT CA226.D FIREBOSTS 81842±142) 1060±342 1458+129 al C32 AS 380.1214.12 (460±163 onalide (84.7 A#30 634224 1755±18 olide Luo et al., Sci. Total Env., 473-474 (2014) 610

Table 1. Mean, minimum, maximum concentrations and removals (with relative standard deviation) for estrogenic hormones in the dissolved

How efficient is the removal of organic/emerging pollutants in conventional treatment plants (incl. AOPs)?

Compound	Average elimination (%) ^a	Effluent concentrations (µg/l)	Main degradation products	Observation
Non-ionic surfactants Alkylphenol ethoxylates	90-99	<0.1-350	APEC, CAPEC, AP	Primary degradation fast; ultimate degradation less than 40%, with metabolites being potential endocrine disruptors
Pharmaceuticals	$\langle \rangle$	**************************************		
Ibuprofen	65-90	0 37-0 60 (3 4)b		
Diclofenac	69-75	0.06-0.81 (2.1)		Rapid photodegradation
Clofibric Acid	34–51	0.12-0.36 (1.6)		Degradation product of lipid-regulating agents
Benzafibrate	83	1.1-2.2 (4.6)		
Naproxen	45-66	0.27-0.61 (2.6)		
Ketoprofen	69	0.02-0.38 (0.87)		
Gemfibrozil	46-69	0.31-0.40 (1.9)		
Carbamazepine	7	0.30-2.1 (6.3)		Low removal rate
Antiseptics				
Triclosan	44–92	0.070-0.650	Methyl triclosan	Possible photodegradation
Pesticides	$\mathbf{\nabla}$			
MCPP and MCPA	(-)	20–400	2-Methyl-4-Cl-phenol	Application period (mid-March until mid-May)
2,4-D	-	< 20	2,4-Dichlorphenol	· · · · · · · · · · · · · · · · · · ·
2,4,5-T	\-/	< 20	2,4-D; 2,4-dichlorphenol	

^aPrimary elimination of the parent compound.

^bRange of average values detected (in parentheses: maximum concentration detected).

Petrovic, Barcelo et al., Trends Anal. Chem., 10 (2003) 685

Removal Yield of Selected Organic Pollutants from Wastewaters of common treatments

UV Irradiation

TABLE 3. Contamina	TABLE 3. Contaminant Removal using UV at 40 mJ/cm ²							
< 30% Removal	30–70% Removal	>70% Removal						
Testosterone	Sulfamethoxazole							
Progesterone	Triclosan							
Androstenedione	Diclofenac							
Estriol	Acetaminophen							
Ethynylestradiol								
Estrone								
Estradiol								
Erythromycin								
Trimethoprim								
Naproxen								
Hydrocodone								
Ibuprofen								
Caffeine								
Fluoxetine								
Meprobamate								
Diazepam								
Dilantin								
Carbamazepine								
DEET								
Atrazine								
Galaxolide								
TCEP								
Iopromide								
Pentoxifylline								
Metolachlor								
Gemfibrozil								
Musk Ketone								

Chlorination

TABLE 4. Contamina dose)	ant Removal using F	<mark>ree Chlorine (</mark> 3.5 mg/L
< 30% Removal 3	80–70% Removal	>70% Removal
Testosterone	Ibuprofen	Estriol
Progesterone	Metolachlor	Ethynylestradiol
Androstenedione	Gemfibrozil	Estrone
Caffeine		Estradiol
Fluoxetine		Erythromycin-H ₂ O
Meprobamate		Sulfamethoxazole
Diazepam		Triclosan
Dilantin		Trimethoprim
Carbamazepine		Naproxen
DEET		Diclofenac
Atrazine		Hydrocodone
Galaxolide		Acetaminophen
TCEP		Musk Ketone
Iopromide		
Pentoxifylline		

How efficient is the removal of organic/emerging pollutants in conventional treatment plants (incl. AOPs)?

Resistant in conventional STP, and examined in our work in radiation processing

Pedrouzo et al., Water Air Soil Pollut., 217 (2011) 267

How efficient is the removal of organic/emerging pollutants in conventional treatment plants (incl. AOPs)?

"mixed" results in reporting, BUT

how reliable is that?

Removal *≠* **Degradation** *≠* **Mineralization**

Removal from solution: what about the other phase(s)? Degradation in each phase: what about by-procucts? Mineralization: it is the only 100% safe option. (must be verified by TOC mass balance).

HOW MANY PRESENTATIONS HERE HAVE ADDRESSED THE ISSUE? (Need of a common Benchmarking system?)

Tentative list of detected products of radiolytic decomposition of diclofenac by LC-TOFMS

Compound	RT (min)	Experimental m/z ([M+H]+)	Assigned elemental composition [M]	DBE	Error (ppm)*	In-source CID fragments	Comments
Diclofenac (DCF)	42.7	296.0234	C ₁₄ H ₁₁ NO ₂ Cl ₂	9	1.9	278; 214,	
DCF-TP1	44.50	250.0184	C ₁₃ H ₉ NCl ₂	9	0.7	214/216 215/217	Neutral loss of Formic acid (more apolar TP)
DCF-TP2	44.0	248.0458	C ₁₃ H ₁₀ NOCI	9	6.0		
DCF-TP3	43.87	230.0333	C ₁₃ H ₈ NOCI	10	14.9		Low int.
DCF-TP4	41.58	214.0394	C ₁₃ H ₈ NCI	10	11.3		
DCF-TP5	41.43	278.0126	C ₁₄ H ₉ NOCl ₂	10	2.8		
DCF-TP6	40.25	262.0577	C ₁₄ H ₉ NOCI	9	20		Dechlorination
DCF-TP7	40.22	254.0086	C ₁₂ H ₉ NOCl ₂	8	7.9	11	
DCF-TP8	37.11	244.0464	C ₁₄ H ₁₀ NOCI	10	24.5		-OH and -CI
DCF-TP9	33.62	274.0237	C ₁₄ H ₈ NO ₃ Cl	11	10.4		+OH and -CI
DCF-TP10	32.96	264.0414	C ₁₃ H ₁₀ NO ₃ Cl	9	3.0	246 (loss H2O)	
DCF-TP11	32.50	294.0053	C ₁₄ H ₉ NO ₂ Cl ₂	10	10.3	245/247	
DCF-TP12	31.5	258.0309	C ₁₄ H ₈ NO ₂ Cl	11	2.8		
DCF-TP12	30.9	278.0573	C14H12NO3CI	9	2.0	230.03/232.03 260.0/262.03 197	– CI + OH
DCF-TP13	30.7	266.0093	C ₁₃ H ₉ NOCl ₂	9	15.4	248 (water loss)	
DCF-TP14	30.7	258.0309	C ₁₄ H ₈ NO ₂ Cl	11	2.8		
DCF-TP15	30.2	298.0050	C ₁₃ H ₉ NO ₃ Cl ₂	9	6.0		
DCF-TP17	29.1	312.0156	C14H11NO3Cl2	9	10.3	Position Isomer of DCF-TP16 [Check 246.030 coeluting frag?	DCF-OH
DCF-TP18	28.1	260.0452	C14H10NO2CI	10	8.0	Frag @ 232.05/234.05 196/197/198	Dechlorination
DCF-TP19	27.6	278.0546	C ₁₄ H ₁₂ NO ₃ Cl	9	11.7		the second se
DCF-TP20	27.3	246.0295	C ₁₃ H ₈ NO ₂ Cl	10	8.7		-CI –CH2
DCF-TP21	27.1	264.0398	C ₁₃ H ₁₀ NO ₃ Cl	9	9.1		
DCF-TP22	27.0	278.0567	C ₁₃ H ₁₀ NO ₃ CI	9	4.1	Water loss (m/z 260) Coeluting m/z 294.0037. Need to check MS/MS	
DCF-TP23	26.4	260.0441	C ₁₄ H ₁₀ NO ₂ Cl	10	12.3		Dechlorination
DCF-TP24	24.7	280.0237	C14H11NOCI2	9	19.1	Water loss	Low int. (Check SPE vial)
DCF-TP25	23.8	244.0517	C14H10NOCI	10	2.8		Low int.
DCF-TP26	23.7	294.0500	C14H12NO4CI C15H13NOCI2 (2 nd option)	9	9.4	Water loss	To be confirmed Elemental comp.
23.00 (6900 scan)							

HPLC Method: A: Water 0.1 % Formic acid; B: Acetonitrile, 0.1 % formic acid. Flow-rate: 0.5 ml/min. Gradient: 0-3min: 30 % B, then from 3-10 min, 30-40 % \rightarrow then 10-40 min, from 40 % to 65 %, then 40-45 min, from 65% to 100%, 45-46, 100%, then 46-47, from 100% to 30% (equilibration) and from 47-55 min, 30 % (initial mobile phase composition for equilibration).

IT-TOF Conditions: full-scan acquisition with polarity switching; mass range: m/z 150-1000; ion trap accumulation time: 50 ms

DCF solution irradiated with 3.6 kGy dose

Advanced Oxidation Processes (AOPs)

defined as near ambient temperature and pressure water treatment processes which involve the generation of highly reactive radicals (especially hydroxyl radicals) in sufficient quantity to effect water purification *Glaze et al., Ozon Sci. Eng., 9 (1987) 335*

Relative Frequency of Reports of Different Types of AOPs (2004-2015)

Advanced Oxidation Processes Classification

(i.e. chemical degradation via oxidative radical, e.g. 'OH generation)

COMMON, CURRENT AOPs MAINSTREAM CLASSIFICATION

Bin, Sobera-Madej, Ozone Sc. Eng., 34 (2012) 136

Advanced Oxidation Processes Classification

(i.e. chemical degradation via oxidative radical, e.g. 'OH generation)

COMMON, CURRENT AOPs MAINSTREAM CLASSIFICATION wait, something's missin'!

Bin, Sobera-Madej, Ozone Sc. Eng., 34 (2012) 136

Advanced Oxidation Processes Classification

(i.e. chemical degradation via oxidative radical, e.g. 'OH generation)

RADIATION ?

NOT REALLY...

RADIATION: NON-IONIZING vs. *IONIZING*

non-ionizing: cannot break chemical bonds but may vibrate atoms

ionizing: can turn atoms into ions by causing loss of electrons

γ-Radiation: most penetrating form of radiation (except neutron).
usually from ⁶⁰Co source, identical effects can be obtained from electron beam (EB) with additional "practical" advantages

ADVANCED OXYDATION & REDUCTION PROCESSES BY IONIZING RADIATION OCCUR EXTREMELY FAST

RADICALS AND MOLECULAR REACTANTS ALSO REVERT EQUALLY FAST TO THE ORIGINAL STATE (WATER) IF NO ORGANIC MOLECULES/SCAVENGERS ARE PRESENT IN SOLUTION. NO TRACE OF RADIOLYSIS (ENERGY OR RADIATION) IS LEFT IN THE SOLUTION.

S. La Caer, Water 3 (2011) 235

Dose Rates achievable by Different <u>Radiation Sources</u>

Kind of the radiation source	kW	Dose rate	(MGy h ⁻¹)
X-rays: 10 mA, 250 kV	0.5 x 10 ⁻⁸	1.8 x 10 ⁻⁵	
⁶⁰ Co-γ-Source			
0.5 x 10°Ci	0.18	0.65	
1 x 10 ⁶ Ci	0.36	1.30	
Electron accelerators			
Van de Graaff (1 mA, 2 MeV)	2	7.2 x 10 ³	
Rhodotron (20 mA, 5 MeV)	100	3.6 x 10 ⁵	
(10 mA, 10 MeV)	100	3.6 x 10 ⁵	
DYNAMITRON (40 mA, 5 MeV)	200	7.2 x 10 ⁵	
LINAC (50 mA, 10 MeV)	500	1.8 x 10 ⁶	

10 kGy absorbed dose produce 2.9 mM •OH radicals

Dose Units

1 rad = 100erg g⁻¹ = $6.24 \times 10^{13} \text{ eVg}^{-1}$; 100 rad = 1 Gy 1 Mrad = 10^6 rad = 10 kGy = 10 Wsg⁻¹ Stoff 1 kW = 1 mA x 1 MeV = 3.6×10^6 J kg⁻¹ = 360 Mrad kg h⁻¹

Getoff, Radiat, Phys. Chem., 65 (2002) 437.

Comparison of Types of Radiation Used for Degradation of Pollutants

Electron beam (EB)	γ-Radiation from ⁶⁰ Co source					
Advantages						
High energy	High penetration depth					
High dose rate	Lower cost than EB accelerators					
Switch on and off operation						
Most efficient source of OH						
Disad	lvantages					
High cost	Continuous operation					
Low penetration depth	Careful protection needed against radiation					
	Most radiation absorbed by shielding					
	Decreasing activity in time					
	Low social acceptance					

Getoff, Radiat. Phys. Chem., 65 (2002) 437

Advanced Oxidation/Reduction Processes and Reactive Species Involved in Destruction of Organic Pollutants

Cooper et al., Ozone Sci. Technol., 30 (2008) 58

Compound	Bimoleo	cular rate consta	rate constants (M ⁻¹ s ⁻¹ 10 ⁹)		Relative importance of species (%)			
	Ю́Н	e ⁻ aq	Ϊ	OH	e- _{aq}	Ĥ		
Target Organic Compo	unds*							
МТВЕ	2	0.0175	0.0001	99		0		
Trichloroethylene	2.9	1.9	NF	61	39	0		
Tetrachloroethylene	2	1.3	5	46	29	25		
Benzene	7.6	0.009	0.91	97	01	3		
Toluene	5.1	0.011	2.6	90	0.1	10		
Ethylbenzene	7.5	NF	NF	100		0		
α-Xylene	6.7	NF	2	94	0	6		
Chloroform	0.054	11	0.073	0.4	99	0.1		
CHBrCl ₂	NF	21	NF	0	10	0		
CHBr ₂ Cl	NF	20	NF	0	10	0		
Bromoform	0.11	26	1.9	0.5	97.5	2		
Ethylenedibromide	0.26	14	NF	2	98	0		
DBCP	0.73	NF	NF	100	0	0		
NDMA	0.33	NF	NF	100	0	0		
Atrazine	2.6	NF	NF	100	0	0		
Simazine	208	NF	NF	100	0	0		
Natural Scavenging Co	mpounds**							
0 ₂	NR	19	<0.001					
HCO ₃ -	0.0085	<0.001	<0.001					
CO ₃ ²⁻	0.39	0.00004	NR					
Cl ⁻	3	<0.001	<0.00001		no data availa	able		
NO ₂ -	11	0.0035	0.71					
NO ₃ -	NR	9.7	0.0014					
DOC	0.2	NR	NR					

WHAT IS AN ELECTRON ACCELERATOR (E-BEAM)?

WHAT IS AN ELECTRON ACCELERATOR (E-BEAM)?

BUILD YOUR OWN

(YOUTUBE ONLINE VIDEO)

ELECTRON ACCELERATOR

WHAT IS AN ELECTRON ACCELERATOR (E-BEAM)?

BASICALLY, A LARGE TV TUBE!!!

1950's Electron accelerator

2000's E-BEAM to treat 10000 m³/d Textile Wastewater in S. Korea

E-Beam for sterilization of aseptic packaging (food/medical)

E-Beam for food sterilization

Present day US-Postal service: E-Beam for suspected anthraxcontaminated post sterilization

Present day compact E-Beam for communications cable processing

E-BEAM APPLICATION TO WATER & WASTEWATER

FLEXIBLE, ADAPTABLE TO OBJECTIVES, EASILY INTEGRATED WITH OTHER EXISTING PROCESSES

APPLICATIONS: Comparison of EB and γ Irradiation – Dose-rate Effects

Gehringer, Eschweiler, Radiat. Phys. Chem., 65 (2002) 379

Kurucz et al., Radiat. Phys. Chem. 65 (2002) 367

Irradiation of Industrial Wastes from Production of Carbendazim

HPLC chromatograms for 1:20 diluted <u>industrial wastes</u> from production of carbendazim irradiated with electron beam:

- prior to the irradiation (green)
- irradiated with 26 kGy dose (blue)
- irradiated with dose 52 kGy (red)

γ -Irradiation of MCPA Pesticide

Changes of MCPA concentration in aqueous solutions determined by HPLC after γ -irradiation with different doses and in different chemical conditions Initial MCPA concentration 500 μ M

Bojanowska-Czajka, Trojanowicz et al., Radiat. Phys. Chem. 76 (2007) 1806

γ-Irradiation of River Water Sample Spiked with Pharmaceuticals

Water sample from river Vistula in Warsaw, spiked with 10 ppb of each analyte

500 mL spiked sample preconcentrated on Oasis HBL (Waters), eluted with 2 mL methanol – prior to and after γ -irradiation at different doses

RP-HPLC with UV detection at 220 nm, column KROMASIL-100 C18, 25 cm, 5 $\mu\text{m},$ 4 mm

Isocratic elution with 50% 0.6 mM KH_2PO_4 , 30% acetonitrile, 20% methanol, pH 4

S. Borowiecka, M.Sc. Thesis, University of Warsaw, 2013

Experimental Factors Determining the Yield of Radiation-Induced Degradation of Organic Pollutants

- Molecular structure of decomposed pollutant
- Kind and energy of radiation, absorbed dose and dose-rate
- Effect of presence of radical scavengers
- Initial concentration of target pollutant
- pH of irradiated solutions
- Content of dissolved oxygen in irradiated solutions
- Synergistic effect of radiation and the presence of ozone or H_2O_2

THE MECHANISMS ARE THE SAME AS FOR ALL OTHER RADICALS-BASED AOPs, PAST, PRESENT AND FUTURE! ... only, faster...

Comparison of Advanced Oxidation Technologies

Characteristic	UV / H ₂ O ₂ Homogeneous Process	UV / H2O2UV / TiO2HomogeneousHeteogeneous Process	
Wavelength, nm	200-300	< 385	-
Quantum yield per •OH radical generated	1.0	0.04 - 0.08	-
Moles [•] OH per 1 kWh	1.4	0.087	1.0
Requires added chemicals?	Yes – H_2O_2 at >25 ppm	No	No
Energy needed EE/O (<u>kWh / m³</u>)	< 3 for most pollutants	> 50 for most pollutants	< 3 for most pollutants
Phenol 500 μM	3.6	336	1.5
Methylene Blue 10 μ M	0.63	16.4	0.60
Separtion needed after treatment?	No	Yes, if TiO ₂ suspension is used	No
Capital cost	Moderate	Moderate	High

Bolton, Cooper et al., J. Adv. Oxid. Technol., 3 (1998) 174

Cost for Unit Power Using Electron Acceleraters (US \$/W)

State of the second							
Total Cost (M\$)	0.6	0.8	1.0	1.5	2	2.2*	0
Unit Cost (\$/W)	30	20	10	7.5	5	2.2	

BUT... does SIZE matters?

B. Han, EB-Tech, Daejeon, Korea, 2013

RESULTS..... Economic Comparison

for reduction of **120 ppb trichloroethylene** to 5 ppb in GW by EB irradiation with and w/out ozone

	EB	$EB + O_3$		
Cost	Electron beam irrad.	Ozone-Electron beam irrad.		
	$370 \text{ Gy} \equiv 146 \text{ m}^3/\text{h}$	$(3 \text{ ppm O}_3 + 45 \text{ Gy}) \equiv 1200 \text{ m}^3/\text{h}$		
Capital requirement (in 1000 US \$ units)				
• 25 kW electron beam accelerator				
(incl. auxiliary equipment transport	1200	1200		
installation, building and vault)	1200	1200		
• Ozone generator	-	270		
Water handling equipment	100	250		
Total	1300	1720		
Capital cost (in US \$/nour)	24			
(9.5 % over 10 years; 8000 hours/year)	20	34		
Operating cost (in US \$/hour)		÷		
• Electric power (\$ 0.14/kWh)				
Accelerator	7	7		
Ozone generator	-	4.5		
Pumps	1.5	32.5		
• Oxygen ($$ 0.23/m^3$) + storage	-	9		
Maintainance	1.5	3		
TOTAL	36 \$/h	90 \$/h		
(Capital + Operating)	0.25 \$/m ³	0.075 \$/m ³		

Gehringer et al., Seibersdorf, Austria, Radiat. Phys. Chem., 46 (1995) 1075

Treatment cost of typical wastewater and liquids

		Dose	Amount	Required	Canital	O&M c	ost	
		(kGy)	(m ³ /day)	Beam (kW)	cost (M\$)	M\$/y (with fixed cost)	\$ per m ³	Remark
1	Pilot plant of effluent from municipal plant	0.5	5,000	50	1.25	0.193* (0.318)**	0.12 (0.19)	Design basis
2	Industrial Textile dyeing wastewater	2	10,000	400	3.0	0.81 (1.11)	0.24 (0.33)	Data from the commercial plant operation
3	Disinfection of effluent from municipal plant	0.4	100,000	800 (400X2)	5.7	1.62 (2.19)	0.049 (0.066)	Data from the pilot plant operation
4	Removal of PCBs from Transform. oils	50	100	100	1.5	0.26 (0.41)	7.9 (12.4)	Data from the pilot plant operation
5	Removal of PCBs from Transform. oils	50	20	20 (Mobile)	(1.3)	0.17 (0.30)	26 (45)	Data from the pilot plant operation
a de ast	Any Liquid	1	5,000	100	1.5	0.26 (0.41)	0.16 (0.25)	Rule of thumb

O&M – operation and maintenance(?)

B. Han, EB-Tech, Daejeon, Korea, 2013

Industrial Plant for Treating Wastewater from Dyeing Process

- Decrease the amount of chemical reagent up to 50%
- Improve the efficiency of biological treatment by 30%
- Decrease the retention time in biological treatment facility

Characteristics of Industrial Plant

- Maximum flow rate of 10,000 m³/day with one 1 MeV, 400 kW accelerator
- Combined with existing biological treatment facility

0.6 - 1.0 MeV

400 kW

500 mA

ELV-12 Accelerator:

Energy

Beam power: Beam current:

> Irradiators : 3 (0~200 mA) Window width: up to 2 m Double extraction window Discharge protection High frequency scanning

B. Han, EB-Tech. Co., Korea, IAEA RCM Vienna, 2006

Radiation processing of water treatment plant

B. Han, EB-Tech, Daejeon, Korea

CONCLUSIONS

Results obtained in several pilot plants indicate, that radiolytic degradation may serve as attractive and cost-effective AO(R)P for the degradation of organic pollutants (and NOT ONLY...)

The cost-effectiveness of radiolytic degradation of pollutants depends mostly on type of organic pollutants and also on their initial concentration and presence of radical scavangers in solution

EB efficacy is not affected by water turbidity or suspended solids, BUT is affected by the water matrix and the number of its components

In cost-effective conditions complete mineralization of organic pollutants, although possible, is usually not pursued in practice, but rather degradation to easier biodegradable, less-toxic species is obtained

Due to extremely high dose-rate achievable, EB-based radiolytic processes are much faster than gamma, x-rays or any other AOPs

Cost-effectiveness of the radiolytic degradation may be improved by carrying them in the presence of ozone or hydrogen peroxide that increase the radicals production of the process

CONCLUSIONS (II)

Initial capital investment is the major cost factor in radiolytic treatment, however, Electron Accelerators costs are constantly reducing due to ongoing important industrial applications

Despite the results obtained in several pilot plants indicate, radiolytic processes are still seen with skepticism by water reseachers and professionals

The cost-effectiveness of radiolytic degradation of pollutants is still to be proved over with real-life, long term applications

EB processing can be combined with traditional processes to achieve the best results with less effort and costs.

Thank you for your attention!

and, just a minute ...

A few openings are still available for the Summer School

"Energy and material recovery from water & wastes for sustainable urban metabolism"

held at Villa Grumello (Lake Como) 21-25 August 2017.

Confirmed lecturers:

Prof. Akintunde Babatunde, UK Dr. James Barnard, USA Prof. Andrea G. Capodaglio, Italy Prof. Maria Loizidou, Greece Dr. Daniele Molognoni, Spain Prof. Gustaf Olsson, Sweden **Prof. David Vaccari, USA**

LAKE COMO SCHOOL

OF ADVANCED STUDIES

Prof. Grietje Zeeman, The Netherlands

If interested, please inquire with me. rmst.lakecomoschool.org