AOPs for Environmental Applications: An overview (or sthg like this)

University of Patras Department of Chemical Engineering GR-26504 Patras, Greece

http://www.chemeng.upatras.gr

Tips to sustain a smiley face during your PhD

A bunch of young PhD students in London of the last century (October 1993 !)

AOPs: How things have changed since the launch of this schematic ?

Feature: Processes yielding and based on OH radicals and other ROS

Tip #1: Process integration

- **Scenarios of Process Integration**
- Simultaneous application of AOPs
- Coupling AOPs with physicochemical processes (to improve selectivity/treatability)
- > AOPs as pre-treatment to biological post-treatment (to save money)
- Various combinations of the above

Additive or synergistic action ? (by visual inspection)

Endocrine disruptor: 420 µg/L propyl paraben

Magnetic carbon xerogel (CX/Fe) + persulfate (SPS), Ultrasound (20kHz US) + persulfate

Additive or synergistic action ? (based on initial rates)

Pesticide imidacloprid: 20 mg/L (it looks and actually is huge !)

UV-A degradation: TiO₂, TiO₂/H₂O₂, TiO₂/Fe³⁺, TiO₂/Fe³⁺/H₂O₂

(■) TiO_2 (0.5 g/L), (●) TiO_2 (0.5 g/L) + Fe^{3+} (7 mg/L), (▲) TiO_2 (0.5 g/L) + H_2O_2 (50 mg/L), (▼) TiO_2 (0.5 g /L) + Fe^{3+} (7 mg/L) + H_2O_2 (50 mg/L)

ζ=f(initial rate, photon flux)=apparent photonic efficiency

Quantifying synergy (based on kinetics)

$$S(\%) = 100 \frac{k_{combined} - \sum_{i=1}^{n} k_{i}}{k_{combined}}$$

 $S\begin{cases}>0 & synergistic effect\\=0 & cumulative effect\\<0 & antagonistic effect\end{cases}$

* Defining the individual processes may be tricky
* Which are the individual pieces in sonophotocatalysis (US+UVA/TiO₂) ?
* Sonolysis + Photocatalysis ?
* Sonocatalysis + Photocatalysis ?
* Sonocatalysis + Photolysis ?

...the approach requires knowledge of k values

Tip #2: Kinetics at a simple level

- * Kinetics, even at the level of a power-law expression, can be confusing
- * Runs at a single concentration and data fitting to $R_A = -kC_A$ is the norm
- * Confusion between data fitting and kinetic modelling
- * Confusion between first and pseudo-first order
- * It's more likely to get 0th order rates at unrealistic concentrations
- * Reactor design is a function of R_A

Tip #2: Kinetics at a simple level

Tip #2: Kinetics at a simple level

* Factorial design and alike statistical tools are very popular nowadays since they "minimize" research effort, e.g. to study 4 variables requires 2⁴ experiments between a low and a high value

* Process variables \rightarrow response \rightarrow simple (simplistic) model \rightarrow physical meaning occasionally questionable

* If C_o is a variable, DO NOT use % removal as the response; instead, try g/L of whatever is removed

* Avoid using pH as a variable even if the system is buffered; pH is a logarithmic expression but the model is usually linear

Tip #3: The water matrix

- * Naturally occurring substances, e.g. anions, cations, natural organic matter, effluent organic matter, extracellular polymeric substances, solids
- * Substances associated with industrial pollution (incl. agrochemical pollution)
- * Substances needed to operate a given AOP, e.g. catalysts and activators, dissolved gases, electrolytes, oxidants
- * Microorganisms
- * The degree of complexity
- * Define the basis to define the matrix !

The dominant opinion

Rule of thumb: The more complex the matrix is, the slower the rate is

* Non-target organics and inorganics scavenge ROS but produce others
 * Concentration of target contaminants <3 orders than non-target species

The system: SMX (ppb) + WO₃/TiO₂ + solar light

The "rule of thumb" re-visited

Question: Is it just an interplay between ROS and the matrix? Answer: Straight No Hypothesis: Very system-specific incl. type of contaminant, source of ROS, catalysts/activators, operating conditions

The system: Bisphenol (BPA) (ppb) + $Na_2S_2O_8$ (ppm) + CX/CoFe

Bicarbonate – The general perception

What generally happens:

 $\begin{array}{l} \mathsf{HCO}_3^- + {}^{\bullet}\mathsf{OH} \rightarrow {}^{\bullet}\mathsf{CO}_3^- + \mathsf{H}_2\mathsf{O} \\ \mathsf{2}{}^{\bullet}\mathsf{CO}_3^- \rightarrow \mathsf{CO}_2 + \mathsf{CO}_4^{2^-} \\ \mathsf{2}{}^{\bullet}\mathsf{OH} \rightarrow \mathsf{H}_2\mathsf{O}_2 \end{array}$

...and its implications:

•OH stronger than $•CO_3^-$ (2.3 vs 1.8 V) • CO_3^- may be more selective than •OH •OH recombines 100X faster than • CO_3^-

The net result:

can go either way but changes in rates are not dramatic

Bicarbonate – Dr Jekyll or Mr Hyde ?

Chemical Engineering Journal, 318, (2017), 39-49

The mechanism of "acceleration"

EPR (DMPO & PBN spin-trapping) shows that **(A)** OH radicals diffuse from the catalyst surface to the solution only in the presence of bicarbonate, while **(B)** carbonate radicals stay on the surface

Bicarbonate – Beware of Greeks bearing gifts ©

* Bicarbonate can be damaging although it's not supposed to be there
* Check for the operating conditions (agitation, purging etc)

Source: http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm

The system: Propylparaben (ppb) + Na₂S₂O₈ (ppm) + CX/Fe + buffered pH=3

Timeo Danaos et dona ferentes, Aeneid (II, 49), Virgil, 29-19 BC

The effect of chloride on kinetics (or mechanisms ?)

Individual effects:

Bicarbonate (detrimental) Alcohols (detrimental) Humic acid (detrimental) Chloride (?)

The effect of chloride

Organics behaving badly

- * NOM, EfOM, EPS in waters/wastewaters
- * Macro-molecules modelled by humic, fulvic acids
- * Concentrations 3+ orders of magnitude relative to (micro-)contaminants
- * As ROS are non-selective, the effect on rates is expectedly negative
- * Perhaps, the most predictable behavior of all effects

Exceptions that prove the rule...

HA photosensitizes Rh/TiO₂. Inset graph shows fluorescence spectra (410nm) of HA at various Rh/TiO₂ concentrations (a-b-c-d=100-200-500-1000 mg/L)

Matrix goes beyond the inherently present species

- * Chloride is a favorite electrolyte in the electrochemical community
 * Indirect oxidation through Cl radicals, Cl₂, ClO₂, HOCl
- * Liquid bulk rxns can yield current efficiencies $=\frac{COD_o COD_t}{8It}FV$ * More impressive can be the effect on pathways/mechanisms HO ΕP HO The system: 181 A.B Ethylparaben (ppb) + BDD anode + Na_2SO_4 HO Journal of 167 A **Environmental** 167 B,C Management, 195, * Hydroxylation -> Dealkylation rxns through •OH (2017), 148-156
 - * Nothing really fancy occurs

Switching to NaCI...

Unrealistic concentrations: an equivalent matrix effect

* Micro-contaminants (ng/L-µg/L) are typically studied at mg/L levels

Authors' reply: "...to overcome analytical constraints associated with very low concentrations and achieve realistic time-scale treatments..."

Bits and pieces of thoughts (instead of conclusions)

* Matrix effects are known, unknown and suspected * Dyes and visible PAOPs need caution * Dyes and O_3 is great combination * Polymerization is under-looked * 1st order * Batch or continuous operation * Integration * Chlorine-based oxidants * Fenton and temp. * Ultrasound and temp. * H_2O_2 method of addition * Synergy * Scaleup * Cost and LCA * L-H model (or dark vs light adsorption) * Control and blank runs * Discuss with others * Write-up (chapters, papers etc) during research * Disappointment is part of the process * Non-TiO₂ photocatalysts * Sample pre-treatment * Pressure costs (for WAO) * COD usually (2-3) times TOC * Different perspectives for micro- and mega-contaminants * Detection of TBPs makes nice papers * Bio- and toxicity tests for mega-contaminants

* Nearly everything can be explained in this live !

* ...and more importantly: **DO NOT LET ADVISORS TOUCH THINGS**

Summing up...

PROCESSES

- "Old-Fashioned" Process integration
- Novel Hybrid Process development

ENVIRONMENT

- Carbon footprint reduction
 Working at the pollution abatement
 interface of
 ENGINEERING APPLICATIONS &
 SCIENCEffective exploitation of:
 - Water (Reuse as Potable)
 - Resources (Valorization)
 - Energy (Renewable & Alternative)

MATERIALS

- Selective catalysts
- (Photo-) active catalysts